論文の概要: Improved quantum circuits for elliptic curve discrete logarithms
- arxiv url: http://arxiv.org/abs/2001.09580v1
- Date: Mon, 27 Jan 2020 04:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 11:54:33.586096
- Title: Improved quantum circuits for elliptic curve discrete logarithms
- Title(参考訳): 楕円曲線離散対数に対する改良量子回路
- Authors: Thomas H\"aner and Samuel Jaques and Michael Naehrig and Martin
Roetteler and Mathias Soeken
- Abstract要約: 楕円曲線スカラー乗算のための改良された量子回路を提案する。
可逆整数やモジュラ演算などの低レベル成分を最適化する。
Q#量子プログラミング言語における点加算の完全な実装を提供する。
- 参考スコア(独自算出の注目度): 6.058525641792685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present improved quantum circuits for elliptic curve scalar
multiplication, the most costly component in Shor's algorithm to compute
discrete logarithms in elliptic curve groups. We optimize low-level components
such as reversible integer and modular arithmetic through windowing techniques
and more adaptive placement of uncomputing steps, and improve over previous
quantum circuits for modular inversion by reformulating the binary Euclidean
algorithm. Overall, we obtain an affine Weierstrass point addition circuit that
has lower depth and uses fewer $T$ gates than previous circuits. While previous
work mostly focuses on minimizing the total number of qubits, we present
various trade-offs between different cost metrics including the number of
qubits, circuit depth and $T$-gate count. Finally, we provide a full
implementation of point addition in the Q# quantum programming language that
allows unit tests and automatic quantum resource estimation for all components.
- Abstract(参考訳): 楕円曲線群における離散対数を計算するShorアルゴリズムの最もコストのかかる成分である楕円曲線スカラー乗算のための改良された量子回路を提案する。
ウィンドウ化手法による可逆整数やモジュラー算術などの低レベル成分を最適化し、二元ユークリッドアルゴリズムを再構成することで、従来の量子回路よりもモジュラー反転を改良した。
全体として,より深度が低く,従来の回路よりもT$ゲートが少ないアフィンワイエストラス点加算回路を得る。
これまでの研究は、主に量子ビットの総数を最小化することに重点を置いてきたが、キュービット数、回路深度、$t$-gateカウントなど、さまざまなコスト指標のトレードオフを示す。
最後に、Q#量子プログラミング言語における点加算の完全な実装を提供し、全てのコンポーネントに対する単体テストと自動量子リソース推定を可能にする。
関連論文リスト
- Classically estimating observables of noiseless quantum circuits [36.688706661620905]
本稿では,ほとんどの量子回路上での任意の観測値の期待値を推定するための古典的アルゴリズムを提案する。
非古典的にシミュレート可能な入力状態やオブザーバブルの場合、予測値は、我々のアルゴリズムを関連する状態の古典的な影またはオブザーバブルで拡張することで推定できる。
論文 参考訳(メタデータ) (2024-09-03T08:44:33Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT回路は一般的な量子回路の共通構成ブロックである。
本稿では,CNOTゲート数を最適化するための最先端アルゴリズムを提案する。
シミュレーション評価により、提案手法はほとんど常に有用であることが示され、CNOTゲートの数を最大10%削減する。
論文 参考訳(メタデータ) (2024-08-07T19:51:22Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
CFD問題を解決するための現在の量子アルゴリズムは、単一の量子回路と、場合によっては格子ベースの方法を用いる。
量子格子ボルツマン法(QLBM)を用いた新しい多重回路アルゴリズムを提案する。
この問題は2次元ナビエ・ストークス方程式の流動関数-渦性定式化として鋳造され、2次元蓋駆動キャビティフローで検証および試験された。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
行列生成状態(MPS)から短深さ量子回路を生成する新しいアルゴリズムであるAQCtensorを導入する。
我々のアプローチは、量子多体ハミルトニアンの時間進化から生じる量子状態の準備に特化している。
100量子ビットのシミュレーション問題に対して、AQCtensorは、結果の最適化回路の深さの少なくとも1桁の縮小を実現していることを示す。
論文 参考訳(メタデータ) (2023-01-20T14:40:29Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Reducing the Depth of Quantum FLT-Based Inversion Circuit [0.5735035463793008]
本稿では、二元有限体に対する既存の量子フェルマーのLittle Theorem(ゲート)ベースの反転回路の深さを削減することを提案する。
私たちのアプローチは、時間効率の実装の代替となることができます。
論文 参考訳(メタデータ) (2022-04-16T00:20:18Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
我々は、$Theta(n)$-depth回路は、$O(ndlog d)$ acillary qubitsを持つ$Theta(log(nd))で作成可能であることを示す。
我々は、ハミルトンシミュレーション、方程式の線形系解法、量子ランダムアクセスメモリの実現など、異なる量子コンピューティングタスクにおける結果の適用について論じる。
論文 参考訳(メタデータ) (2022-01-27T13:16:30Z) - Reducing the Depth of Linear Reversible Quantum Circuits [0.0]
量子コンピューティングでは、量子ビットのデコヒーレンス時間が計算時間を決定する。
本稿では,既存のアルゴリズムの2倍の浅さの量子回路を生成する分割・征服アルゴリズムの実用的な定式化を提案する。
全体としては、可逆関数のクラス全体の深さを一貫して減らし、アンシラフリーケースでは最大92%、アシラリーキュービットが利用可能であれば最大99%に抑えることができる。
論文 参考訳(メタデータ) (2022-01-17T12:36:32Z) - Halving the cost of quantum multiplexed rotations [0.0]
我々は、$c$制御を持つ多重量子ゲートの$b$-bit近似に必要な$T$ゲートの数を改善する。
以上の結果から,2要素あるいはテンソルハイパーコントラクション表現の量子化に基づく最先端電子構造シミュレーションのコストを約半分に抑えることができた。
論文 参考訳(メタデータ) (2021-10-26T06:49:44Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。