論文の概要: Classically estimating observables of noiseless quantum circuits
- arxiv url: http://arxiv.org/abs/2409.01706v1
- Date: Tue, 3 Sep 2024 08:44:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:16:32.336350
- Title: Classically estimating observables of noiseless quantum circuits
- Title(参考訳): ノイズレス量子回路の古典的可観測性の推定
- Authors: Armando Angrisani, Alexander Schmidhuber, Manuel S. Rudolph, M. Cerezo, Zoë Holmes, Hsin-Yuan Huang,
- Abstract要約: 本稿では,ほとんどの量子回路上での任意の観測値の期待値を推定するための古典的アルゴリズムを提案する。
非古典的にシミュレート可能な入力状態やオブザーバブルの場合、予測値は、我々のアルゴリズムを関連する状態の古典的な影またはオブザーバブルで拡張することで推定できる。
- 参考スコア(独自算出の注目度): 36.688706661620905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a classical algorithm for estimating expectation values of arbitrary observables on most quantum circuits across all circuit architectures and depths, including those with all-to-all connectivity. We prove that for any architecture where each circuit layer is equipped with a measure invariant under single-qubit rotations, our algorithm achieves a small error $\varepsilon$ on all circuits except for a small fraction $\delta$. The computational time is polynomial in qubit count and circuit depth for any small constant $\varepsilon, \delta$, and quasi-polynomial for inverse-polynomially small $\varepsilon, \delta$. For non-classically-simulable input states or observables, the expectation values can be estimated by augmenting our algorithm with classical shadows of the relevant state or observable. Our approach leverages a Pauli-path method under Heisenberg evolution. While prior works are limited to noisy quantum circuits, we establish classical simulability in noiseless regimes. Given that most quantum circuits in an architecture exhibit chaotic and locally scrambling behavior, our work demonstrates that estimating observables of such quantum dynamics is classically tractable across all geometries.
- Abstract(参考訳): 本稿では,全接続性を含む全ての回路アーキテクチャおよび深さの量子回路上での任意の観測値の期待値を推定するための古典的アルゴリズムを提案する。
本手法は,各回路層に1キュービット回転の下での計測不変量を持つアーキテクチャにおいて,各回路上の小さな誤差$\varepsilon$を,小さな分数$\delta$を除いて達成する。
計算時間は qubit count と circuit depth の多項式で、任意の小さな定数 $\varepsilon, \delta$, and quasi-polynomial for inverse-polynomially small $\varepsilon, \delta$ である。
非古典的にシミュレート可能な入力状態やオブザーバブルの場合、予測値は、我々のアルゴリズムを関連する状態の古典的な影またはオブザーバブルで拡張することで推定できる。
提案手法はハイゼンベルク進化下でのパウリパス法を利用する。
先行研究はノイズの多い量子回路に限られるが、ノイズのない状態において古典的なシミュラビリティを確立する。
アーキテクチャにおけるほとんどの量子回路はカオス的かつ局所的なスクランブルな振る舞いを示すので、我々の研究は、そのような量子力学の観測可能量の推定が古典的に全ての測地で可能であることを証明している。
関連論文リスト
- Pauli path simulations of noisy quantum circuits beyond average case [0.3277163122167433]
深さ$n$ qubitsのランダム量子回路では、パウリパス法を用いて出力状態からのサンプリングを効率よく行うことができる。
我々は、Tゲートであるゲートの分数とノイズ率の相似性について十分な条件を導出し、ノイズがより速い速度で導入された場合、シミュレーションは古典的に容易になることを示す。
論文 参考訳(メタデータ) (2024-07-22T21:58:37Z) - A polynomial-time classical algorithm for noisy quantum circuits [1.2708457954150887]
雑音量子回路のための時空古典的アルゴリズムを提供する。
我々のアプローチは、雑音が非局所的相関を指数的に減衰させるという直感に基づいている。
論文 参考訳(メタデータ) (2024-07-17T17:48:39Z) - Learning shallow quantum circuits [7.411898489476803]
未知の$n$-qubit浅量子回路$U$を学習するためのアルゴリズムを提案する。
また、未知の$n$-qubit状態$lvert psi rangle$の記述を学習するための古典的なアルゴリズムも提供する。
提案手法では,局所反転に基づく量子回路表現と,これらの逆変換を組み合わせた手法を用いる。
論文 参考訳(メタデータ) (2024-01-18T16:05:00Z) - A noise-limiting quantum algorithm using mid-circuit measurements for
dynamical correlations at infinite temperature [0.0]
中間回路計測とフィードフォワードで構築した量子チャネルを導入する。
分極チャネルの存在下では、大きな深さ制限で意味のある非ゼロ信号を表示する。
本稿では,量子チャネルの耐雑音性について紹介する。
論文 参考訳(メタデータ) (2024-01-04T11:25:04Z) - Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach [1.806183113759115]
大規模変動量子アルゴリズムは量子優位性を達成するための潜在的な経路として広く認識されている。
本稿では,可観測物のバックプロパゲーションの積分経路に基づく新しい$gammaPPP法を提案する。
我々は,IBMの127量子ビットイーグルプロセッサにおけるゼロノード化実験結果の古典的シミュレーションを行う。
論文 参考訳(メタデータ) (2023-06-09T10:42:07Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
近年、変分量子回路は量子シミュレーションや量子機械学習に広く用いられている。
しかし、ランダムな構造を持つ量子回路は、回路深さと量子ビット数に関して指数関数的に消える勾配のため、トレーニング容易性が低い。
この結果、ディープ量子回路は実用的なタスクでは実現できないという一般的な信念が導かれる。
論文 参考訳(メタデータ) (2022-03-17T15:06:40Z) - The principle of majorization: application to random quantum circuits [68.8204255655161]
i) 普遍的、ii) 古典的シミュラブル、iii) 普遍的、古典的シミュラブルの3つのクラスが考慮された。
回路のすべての族が平均的に正規化の原理を満たすことを検証した。
明らかな違いは、状態に関連したローレンツ曲線のゆらぎに現れる。
論文 参考訳(メタデータ) (2021-02-19T16:07:09Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。