Estimating heterogeneous treatment effects with right-censored data via
causal survival forests
- URL: http://arxiv.org/abs/2001.09887v4
- Date: Mon, 5 Sep 2022 14:16:11 GMT
- Title: Estimating heterogeneous treatment effects with right-censored data via
causal survival forests
- Authors: Yifan Cui, Michael R. Kosorok, Erik Sverdrup, Stefan Wager, Ruoqing
Zhu
- Abstract summary: We introduce causal survival forests, which can be used to estimate heterogeneous treatment effects in a survival and observational setting.
Our approach relies on estimating equations to robustly adjust for both censoring and selection effects under unconfoundedness.
- Score: 2.624902795082451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forest-based methods have recently gained in popularity for non-parametric
treatment effect estimation. Building on this line of work, we introduce causal
survival forests, which can be used to estimate heterogeneous treatment effects
in a survival and observational setting where outcomes may be right-censored.
Our approach relies on orthogonal estimating equations to robustly adjust for
both censoring and selection effects under unconfoundedness. In our
experiments, we find our approach to perform well relative to a number of
baselines.
Related papers
- A Bayesian Classification Trees Approach to Treatment Effect Variation with Noncompliance [0.5356944479760104]
Estimating varying treatment effects in randomized trials with noncompliance is inherently challenging.
Existing flexible machine learning methods are highly sensitive to the weak instruments problem.
We present a Bayesian Causal Forest model for binary response variables in scenarios with noncompliance.
arXiv Detail & Related papers (2024-08-14T18:33:55Z) - Heterogeneous Treatment Effects in Panel Data [1.5535138991304305]
We propose and evaluate a new method that partitions observations into disjoint clusters with similar treatment effects using a regression tree.
Our theoretical results establish the convergence of the resulting estimates to the true treatment effects.
arXiv Detail & Related papers (2024-06-09T04:02:08Z) - Variable importance for causal forests: breaking down the heterogeneity
of treatment effects [0.0]
We develop a new importance variable algorithm for causal forests.
We show how to handle the forest retrain without a confounding variable.
Experiments on simulated, semi-synthetic, and real data show the good performance of our importance measure.
arXiv Detail & Related papers (2023-08-07T07:43:42Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests [0.0]
We propose modifications to model-based forests to address the confounding issue in observational data.
We found that this strategy reduces confounding effects in a simulated study with various outcome distributions.
We demonstrate the practical aspects of HTE estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
arXiv Detail & Related papers (2022-10-06T11:49:39Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Sparse Bayesian Causal Forests for Heterogeneous Treatment Effects
Estimation [0.0]
This paper develops a sparsity-inducing version of Bayesian Causal Forests.
It is designed to estimate heterogeneous treatment effects using observational data.
arXiv Detail & Related papers (2021-02-12T15:24:50Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.