Agile and versatile quantum communication: signatures and secrets
- URL: http://arxiv.org/abs/2001.10089v3
- Date: Sat, 19 Dec 2020 17:31:57 GMT
- Title: Agile and versatile quantum communication: signatures and secrets
- Authors: Stefan Richter, Matthew Thornton, Imran Khan, Hannah Scott, Kevin
Jaksch, Ulrich Vogl, Birgit Stiller, Gerd Leuchs, Christoph Marquardt,
Natalia Korolkova
- Abstract summary: We demonstrate two quantum cryptographic protocols, quantum digital signatures (QDS) and quantum secret sharing (QSS) on the same hardware sender and receiver platform.
This is the first proof-of-principle demonstration of an agile and versatile quantum communication system.
- Score: 0.7980685978549763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agile cryptography allows for a resource-efficient swap of a cryptographic
core in case the security of an underlying classical cryptographic algorithm
becomes compromised. Conversely, versatile cryptography allows the user to
switch the cryptographic task without requiring any knowledge of its inner
workings. In this paper, we suggest how these related principles can be applied
to the field of quantum cryptography by explicitly demonstrating two quantum
cryptographic protocols, quantum digital signatures (QDS) and quantum secret
sharing (QSS), on the same hardware sender and receiver platform. Crucially,
the protocols differ only in their classical post-processing. The system is
also suitable for quantum key distribution (QKD) and is highly compatible with
deployed telecommunication infrastructures, since it uses standard quadrature
phase shift keying (QPSK) encoding and heterodyne detection. For the first
time, QDS protocols are modified to allow for postselection at the receiver,
enhancing protocol performance. The cryptographic primitives QDS and QSS are
inherently multipartite and we prove that they are secure not only when a
player internal to the task is dishonest, but also when (external)
eavesdropping on the quantum channel is allowed. In our first
proof-of-principle demonstration of an agile and versatile quantum
communication system, the quantum states were distributed at GHz rates. This
allows for a one-bit message to be securely signed using our QDS protocols in
less than 0.05 ms over a 2 km fiber link and in less than 0.2~s over a 20 km
fiber link. To our knowledge, this also marks the first demonstration of a
continuous-variable direct QSS protocol.
Related papers
- Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Experimental Demonstration of Sequential Multiparty Quantum Secret
Sharing and Quantum Conference Key Agreement [5.666056657438205]
Quantum secret sharing (QSS) and quantum conference key agreement (QCKA) provide efficient encryption approaches for multi-party secure communication.
We present three practical, scalable, verifiable (k, n) threshold QSS protocols that are secure against eavesdroppers and dishonest players.
arXiv Detail & Related papers (2023-02-22T03:59:15Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Quantum Encryption in Phase Space for Coherent Optical Communications [0.0]
Quantum Encryption in Phase Space (QEPS) is a physical layer encryption method to secure data over the optical fiber.
We study two preventative measures for different modulation formats which will prevent an eavesdropper from obtaining any data.
arXiv Detail & Related papers (2023-01-15T15:08:53Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - Efficient Quantum Digital Signatures without Symmetrization Step [7.848038078036641]
Quantum digital signatures (QDS) exploit quantum laws to guarantee non-repudiation, unforgeability and transferability of messages.
Current QDS protocols face two major restrictions, including the requirement of the symmetrization step.
We present an efficient QDS protocol to overcome these issues by utilizing the classical post-processing operation called post-matching method.
arXiv Detail & Related papers (2021-04-08T01:54:50Z) - Measurement-device-independent QSDC protocol using Bell and GHZ states
on quantum simulator [0.0]
Quantum Secure Direct Communication (QSDC) protocol eliminates the necessity of key, encryption and ciphertext transmission.
It is a unique quantum communication scheme where secret information is transmitted directly over a quantum communication channel.
We make use of measurement-device-independent (MDI) protocol in this scheme where all the measurements of quantum states during communication are performed by a third party.
arXiv Detail & Related papers (2020-07-01T07:47:59Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.