Spin-dependent two-photon Bragg scattering in the Kapitza-Dirac effect
- URL: http://arxiv.org/abs/2001.10177v2
- Date: Thu, 10 Sep 2020 08:52:39 GMT
- Title: Spin-dependent two-photon Bragg scattering in the Kapitza-Dirac effect
- Authors: Sven Ahrens and Zhenfeng Liang and Tilen Cadez and Baifei Shen
- Abstract summary: We present the possibility of spin-dependent Kapitza-Dirac scattering based on a two-photon interaction only.
We explicitly show the mathematical correspondence to the spin-dynamics of an electron diffraction process in a standing light wave.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the possibility of spin-dependent Kapitza-Dirac scattering based
on a two-photon interaction only. The interaction scheme is inspired from a
Compton scattering process, for which we explicitly show the mathematical
correspondence to the spin-dynamics of an electron diffraction process in a
standing light wave. The spin effect has the advantage that it already appears
in a Bragg scattering setup with arbitrary low field amplitudes, for which we
have estimated the diffraction count rate in a realistic experimental setup at
available X-ray free-electron laser facilities.
Related papers
- Spin Noise Spectroscopy of a Single Spin using Single Detected Photons [0.0]
We experimentally demonstrate a new approach in spin noise spectroscopy, based on the detection of single photons.
Such a technique can be extended to an ultrafast regime probing mechanisms down to few tens of picoseconds.
arXiv Detail & Related papers (2024-01-26T16:07:50Z) - Coherence in resonance fluorescence [12.793630118234434]
Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity.
Recent theory attributes anti-bunching to the laser-like spectrum's interference with the incoherently scattered light.
arXiv Detail & Related papers (2023-12-21T11:25:31Z) - Production of entangled x rays through nonlinear double Compton scattering [0.0]
An accessible tabletop source for the production of entangled x rays is crucial for high-energy quantum optics.
We present a detailed analysis of the entanglement and polarization of the two photons emitted by an electron in an intense laser wave.
We propose an experiment to produce and isolate pairs of entangled x rays, through spectral filtering.
arXiv Detail & Related papers (2023-11-29T16:57:27Z) - Parameter space investigation for spin-dependent electron diffraction in
the Kapitza-Dirac effect [5.232387551199767]
We show that spin-dependent electron diffraction is possible for a smooth range of transverse electron momenta in a two-photon Bragg scattering scenario.
Our analysis is rendered possible by introducing a generalized specification for quantifying spin-dependent diffraction.
arXiv Detail & Related papers (2023-08-25T06:35:52Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Atom-Photon Spin-Exchange Collisions Mediated by Rydberg Dressing [11.207403145794927]
We show that photons propagating through a Rydberg-dressed atomic ensemble can exchange its spin state with a single atom.
Such a spin-exchange collision exhibits both dissipative and coherent features, depending on the interaction strength.
arXiv Detail & Related papers (2020-03-19T12:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.