Compact recurrent neural networks for acoustic event detection on
low-energy low-complexity platforms
- URL: http://arxiv.org/abs/2001.10876v1
- Date: Wed, 29 Jan 2020 14:56:52 GMT
- Title: Compact recurrent neural networks for acoustic event detection on
low-energy low-complexity platforms
- Authors: Gianmarco Cerutti, Rahul Prasad, Alessio Brutti, and Elisabetta
Farella
- Abstract summary: This paper addresses the application of sound event detection at the edge, by optimizing deep learning techniques on resource-constrained embedded platforms for the IoT.
A two-stage student-teacher approach is presented to make state-of-the-art neural networks for sound event detection fit on current microcontrollers.
Our embedded implementation can achieve 68% accuracy in recognition on Urbansound8k, not far from state-of-the-art performance.
- Score: 10.04812789957562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outdoor acoustic events detection is an exciting research field but
challenged by the need for complex algorithms and deep learning techniques,
typically requiring many computational, memory, and energy resources. This
challenge discourages IoT implementation, where an efficient use of resources
is required. However, current embedded technologies and microcontrollers have
increased their capabilities without penalizing energy efficiency. This paper
addresses the application of sound event detection at the edge, by optimizing
deep learning techniques on resource-constrained embedded platforms for the
IoT. The contribution is two-fold: firstly, a two-stage student-teacher
approach is presented to make state-of-the-art neural networks for sound event
detection fit on current microcontrollers; secondly, we test our approach on an
ARM Cortex M4, particularly focusing on issues related to 8-bits quantization.
Our embedded implementation can achieve 68% accuracy in recognition on
Urbansound8k, not far from state-of-the-art performance, with an inference time
of 125 ms for each second of the audio stream, and power consumption of 5.5 mW
in just 34.3 kB of RAM.
Related papers
- Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors [0.8426358786287627]
In this work, we present a low-power Leaky Integrate-and-Fire neuron design fabricated in TSMC's 28 nm CMOS technology.
The fabricated neuron consumes 1.61 fJ/spike and occupies an active area of 34 $mu m2$, leading to a maximum spiking frequency of 300 kHz at 250 mV power supply.
arXiv Detail & Related papers (2024-08-14T17:51:20Z) - Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition [2.710807780228189]
Energy efficiency and low latency are crucial requirements for wearable AI-empowered human activity recognition systems.
Spike-based workouts recognition system can achieve a comparable accuracy to popular milliwatt RISC-V bases multi-core processor GAP8 with a traditional neural network.
arXiv Detail & Related papers (2023-08-01T18:59:06Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
Untrimmed video understanding such as temporal action detection (TAD) often suffers from the pain of huge demand for computing resources.
We build a unified framework for efficient end-to-end temporal action detection (ETAD)
ETAD achieves state-of-the-art performance on both THUMOS-14 and ActivityNet-1.3.
arXiv Detail & Related papers (2022-05-14T21:16:21Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
A neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression.
This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.
arXiv Detail & Related papers (2021-05-04T18:06:23Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Sound Event Detection with Binary Neural Networks on Tightly
Power-Constrained IoT Devices [20.349809458335532]
Sound event detection (SED) is a hot topic in consumer and smart city applications.
Existing approaches based on Deep Neural Networks are very effective, but highly demanding in terms of memory, power, and throughput.
In this paper, we explore the combination of extreme quantization to a small-print binary neural network (BNN) with the highly energy-efficient, RISC-V-based (8+1)-core GAP8 microcontroller.
arXiv Detail & Related papers (2021-01-12T12:38:23Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z) - Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection [99.94079901071163]
This paper presents a novel end-to-end system for pedestrian detection using Dynamic Vision Sensors (DVSs)
We target applications where multiple sensors transmit data to a local processing unit, which executes a detection algorithm.
Our detector is able to perform a detection every 450 ms, with an overall testing F1 score of 83%.
arXiv Detail & Related papers (2020-04-03T17:36:26Z) - Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms
for Cardiac Arrhythmia Detection [0.18459705687628122]
We focus on the inference of neural networks running in microcontrollers and low-power processors.
We adapted an existing convolutional-recurrent neural network to detect and classify cardiac arrhythmias.
We show our implementation in fixed-point precision, using the CMSIS-NN libraries, with a memory footprint of 195.6KB, and a throughput of 33.98MOps/s.
arXiv Detail & Related papers (2020-01-08T10:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.