論文の概要: Deep Reinforcement Learning for Autonomous Driving: A Survey
- arxiv url: http://arxiv.org/abs/2002.00444v2
- Date: Sat, 23 Jan 2021 17:02:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 19:58:17.236563
- Title: Deep Reinforcement Learning for Autonomous Driving: A Survey
- Title(参考訳): 自動運転のための深層強化学習:サーベイ
- Authors: B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A.
Al Sallab, Senthil Yogamani, Patrick P\'erez
- Abstract要約: このレビューは、深層強化学習(DRL)アルゴリズムを要約し、自動走行タスクの分類を提供する。
また、振る舞いのクローン化、模倣学習、逆強化学習など、古典的なRLアルゴリズムとは無関係な隣接領域についても記述する。
トレーニングエージェントにおけるシミュレータの役割,RLにおける既存ソリューションの検証,テスト,堅牢化手法について論じる。
- 参考スコア(独自算出の注目度): 0.3694429692322631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep representation learning, the domain of
reinforcement learning (RL) has become a powerful learning framework now
capable of learning complex policies in high dimensional environments. This
review summarises deep reinforcement learning (DRL) algorithms and provides a
taxonomy of automated driving tasks where (D)RL methods have been employed,
while addressing key computational challenges in real world deployment of
autonomous driving agents. It also delineates adjacent domains such as behavior
cloning, imitation learning, inverse reinforcement learning that are related
but are not classical RL algorithms. The role of simulators in training agents,
methods to validate, test and robustify existing solutions in RL are discussed.
- Abstract(参考訳): 深層表現学習の開発により、強化学習(rl)の領域は、高次元環境で複雑なポリシーを学習できる強力な学習フレームワークとなった。
本総説では, 自律運転エージェントの現実展開における重要な計算課題に対処しつつ, 深部強化学習(DRL)アルゴリズムを要約し, (D)RL手法を用いた自動運転タスクの分類を提供する。
また、振る舞いのクローン化、模倣学習、関連するが古典的rlアルゴリズムではない逆強化学習など、隣接するドメインを記述している。
トレーニングエージェントにおけるシミュレータの役割,RLにおける既存ソリューションの検証,テスト,堅牢化手法について論じる。
関連論文リスト
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
強化学習(Reinforcement Learning, RL)は、自動化とロボット工学の領域において、変革的なアプローチとして登場した。
本研究は、フィードフォワード生ライダーと速度データのみを用いて、レース環境をナビゲートするRLエージェントを開発し、訓練する。
エージェントのパフォーマンスは、実世界のレースシナリオで実験的に評価される。
論文 参考訳(メタデータ) (2023-09-01T07:03:05Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - DriverGym: Democratising Reinforcement Learning for Autonomous Driving [75.91049219123899]
本稿では,自律運転のための強化学習アルゴリズムを開発するオープンソース環境であるDeadGymを提案する。
DriverGymは1000時間以上の専門家ログデータへのアクセスを提供し、リアクティブおよびデータ駆動エージェントの動作をサポートする。
広範かつフレキシブルなクローズループ評価プロトコルを用いて,実世界のデータ上でRLポリシーの性能を容易に検証できる。
論文 参考訳(メタデータ) (2021-11-12T11:47:08Z) - Hierarchical Program-Triggered Reinforcement Learning Agents For
Automated Driving [5.404179497338455]
Reinforcement Learning(RL)とDeep Learning(DL)の最近の進歩は、自動運転を含む複雑なタスクで印象的なパフォーマンスを示しています。
本稿では,構造化プログラムと複数のrlエージェントからなる階層構造を用いて,比較的単純なタスクを実行するように訓練した階層型プログラムトリガー型強化学習法を提案する。
検証の焦点はRLエージェントからの単純な保証の下でマスタープログラムにシフトし、複雑なRLエージェントよりも解釈可能で検証可能な実装となる。
論文 参考訳(メタデータ) (2021-03-25T14:19:54Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway
Decision-making for Automated Vehicles [2.394554182452767]
人工知能の課題に対処するための強力な方法論として、深層強化学習(DRL)が登場している。
本稿では高速道路における自律走行車による意思決定問題に対するDRLアプローチについて比較する。
これらのDRL対応意思決定戦略の制御性能を評価するために,一連のシミュレーション実験を行った。
論文 参考訳(メタデータ) (2020-08-04T03:21:34Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
強化学習(Reinforcement Learning, RL)アルゴリズムは、在庫管理、レコメンデータシステム、車両交通管理、クラウドコンピューティング、ロボット工学などの分野で応用されている。
これらの領域で生じる多くのタスクの現実的な合併症は、古典的RLアルゴリズムの基礎となる基本的な仮定で解くのを難しくする。
本稿では、動的に変化する環境モデルを扱うために開発されたRL法について調査する。
これらのアルゴリズムの代表的コレクションは、それらの分類と相対的なメリットとデメリットと共に、この研究で詳細に議論されている。
論文 参考訳(メタデータ) (2020-05-19T09:42:42Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
論文 参考訳(メタデータ) (2020-04-24T15:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。