Controlling magnetic correlations in a driven Hubbard system far from
half-filling
- URL: http://arxiv.org/abs/2002.02312v2
- Date: Sat, 30 May 2020 11:20:04 GMT
- Title: Controlling magnetic correlations in a driven Hubbard system far from
half-filling
- Authors: Hongmin Gao, Jonathan R. Coulthard, Dieter Jaksch and Jordi Mur-Petit
- Abstract summary: We propose using ultracold fermionic atoms trapped in a periodically shaken optical lattice as a quantum simulator of the t-J Hamiltonian.
Results open new routes to explore the interplay between density and spin in strongly-correlated fermionic systems.
- Score: 0.30586855806896046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose using ultracold fermionic atoms trapped in a periodically shaken
optical lattice as a quantum simulator of the t-J Hamiltonian, which describes
the dynamics in doped antiferromagnets and is thought to be relevant to the
problem of high-temperature superconductivity in the cuprates. We show
analytically that the effective Hamiltonian describing this system for
off-resonant driving is the t-J model with additional pair hopping terms, whose
parameters can all be controlled by the drive. We then demonstrate numerically
using tensor network methods for a 1D lattice that a slow modification of the
driving strength allows near-adiabatic transfer of the system from the ground
state of the underlying Hubbard model to the ground state of the effective t-J
Hamiltonian. Finally, we report exact diagonalization calculations illustrating
the control achievable on the dynamics of spin-singlet pairs in 2D lattices
utilising this technique with current cold-atom quantum-simulation technology.
These results open new routes to explore the interplay between density and spin
in strongly-correlated fermionic systems through their out-of-equilibrium
dynamics.
Related papers
- Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Multichromatic Floquet engineering of quantum dissipation [0.0]
monochromatic driving of a quantum system is a successful technique in quantum simulations.
We show that the time coarse-grained dynamics of such a driven closed quantum system is encapsulated in an effective Master equation.
As an application, we emulate the dissipation induced by phase noise and incoherent emission/absorption processes in the bichromatic driving of a two-level system.
arXiv Detail & Related papers (2023-06-02T16:51:28Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.