Quantum walks and Dirac cellular automata on a programmable trapped-ion
quantum computer
- URL: http://arxiv.org/abs/2002.02537v1
- Date: Thu, 6 Feb 2020 22:24:56 GMT
- Title: Quantum walks and Dirac cellular automata on a programmable trapped-ion
quantum computer
- Authors: C. Huerta Alderete, Shivani Singh, Nhung H. Nguyen, Daiwei Zhu,
Radhakrishnan Balu, Christopher Monroe, C. M. Chandrashekar, and Norbert M.
Linke
- Abstract summary: We present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor.
We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter.
The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.
- Score: 1.2324860823895265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum walk formalism is a widely used and highly successful framework
for modeling quantum systems, such as simulations of the Dirac equation,
different dynamics in both the low and high energy regime, and for developing a
wide range of quantum algorithms. Here we present the circuit-based
implementation of a discrete-time quantum walk in position space on a
five-qubit trapped-ion quantum processor. We encode the space of walker
positions in particular multi-qubit states and program the system to operate
with different quantum walk parameters, experimentally realizing a Dirac
cellular automaton with tunable mass parameter. The quantum walk circuits and
position state mapping scale favorably to a larger model and physical systems,
allowing the implementation of any algorithm based on discrete-time quantum
walks algorithm and the dynamics associated with the discretized version of the
Dirac equation.
Related papers
- qHEOM: A Quantum Algorithm for Simulating Non-Markovian Quantum Dynamics Using the Hierarchical Equations of Motion [0.0]
We introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems.
Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2024-11-18T20:41:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Real- and imaginary-time evolution with compressed quantum circuits [0.5089078998562184]
We show that quantum circuits can provide a dramatically more efficient representation than current classical numerics.
For quantum circuits, we perform both real- and imaginary-time evolution using an optimization algorithm that is feasible on near-term quantum computers.
arXiv Detail & Related papers (2020-08-24T11:16:43Z) - Multi-qubit quantum computing using discrete-time quantum walks on
closed graphs [2.781051183509143]
Universal quantum computation can be realised using both continuous-time and discrete-time quantum walks.
We present a version based on single particle discrete-time quantum walk to realize multi-qubit computation tasks.
arXiv Detail & Related papers (2020-04-13T14:12:05Z) - Quantum circuits for the realization of equivalent forms of
one-dimensional discrete-time quantum walks on near-term quantum hardware [1.400804591672331]
Quantum walks are a promising framework for developing quantum algorithms and quantum simulations.
We present different forms of discrete-time quantum walks (DTQWs) and show their equivalence for physical realizations.
arXiv Detail & Related papers (2020-01-30T07:29:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.