論文の概要: Learning Whole-body Motor Skills for Humanoids
- arxiv url: http://arxiv.org/abs/2002.02991v1
- Date: Fri, 7 Feb 2020 19:40:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 04:36:14.743434
- Title: Learning Whole-body Motor Skills for Humanoids
- Title(参考訳): ヒューマノイドの全身運動能力の学習
- Authors: Chuanyu Yang, Kai Yuan, Wolfgang Merkt, Taku Komura, Sethu
Vijayakumar, Zhibin Li
- Abstract要約: 本稿では,多種多様なプッシュリカバリとバランス行動のための運動スキルを習得するDeep Reinforcement Learningの階層的枠組みを提案する。
この方針は、ロボットモデルの現実的な設定と、学習したスキルを実際のロボットに簡単に伝達できる低レベルのインピーダンス制御を備えた物理シミュレーターで訓練されている。
- 参考スコア(独自算出の注目度): 25.443880385966114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a hierarchical framework for Deep Reinforcement Learning
that acquires motor skills for a variety of push recovery and balancing
behaviors, i.e., ankle, hip, foot tilting, and stepping strategies. The policy
is trained in a physics simulator with realistic setting of robot model and
low-level impedance control that are easy to transfer the learned skills to
real robots. The advantage over traditional methods is the integration of
high-level planner and feedback control all in one single coherent policy
network, which is generic for learning versatile balancing and recovery motions
against unknown perturbations at arbitrary locations (e.g., legs, torso).
Furthermore, the proposed framework allows the policy to be learned quickly by
many state-of-the-art learning algorithms. By comparing our learned results to
studies of preprogrammed, special-purpose controllers in the literature,
self-learned skills are comparable in terms of disturbance rejection but with
additional advantages of producing a wide range of adaptive, versatile and
robust behaviors.
- Abstract(参考訳): 本稿では, 足首, ヒップ, 足の傾き, ステッピング戦略など, 様々なプッシュリカバリとバランス行動のための運動スキルを習得するDeep Reinforcement Learningの階層的枠組みを提案する。
このポリシーは、実際のロボットに学習スキルを移すのが容易な、ロボットモデルの現実的な設定と低レベルインピーダンス制御を備えた物理シミュレータで訓練される。
従来の手法の利点は、単一のコヒーレントポリシーネットワークに高レベルのプランナーとフィードバック制御を統合することであり、これは任意の場所で未知の摂動(例えば、脚、胴体)に対して、多元的バランスと回復の動作を学ぶための一般的な方法である。
さらに,提案フレームワークにより,多くの最先端学習アルゴリズムにより,ポリシーを迅速に学習することができる。
学習した結果を文学における特別目的の制御器の研究と比較することで、自己学習スキルは外乱拒否の点で同等であるが、幅広い適応的で多用途で頑健な行動を生み出すという利点がある。
関連論文リスト
- Back-stepping Experience Replay with Application to Model-free Reinforcement Learning for a Soft Snake Robot [15.005962159112002]
Back-stepping Experience Replay (BER)は、任意の外部強化学習アルゴリズムと互換性がある。
柔らかいヘビロボットの移動とナビゲーションのためのモデルレスRLアプローチにおけるBERの適用について述べる。
論文 参考訳(メタデータ) (2024-01-21T02:17:16Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
我々は,学習効率と学習に基づく自律的把握の一般化性を向上させるために,階層的リワード機構を備えた物理誘導型深層強化学習を開発した。
本手法は3本指MICOロボットアームを用いたロボット把握作業において有効である。
論文 参考訳(メタデータ) (2022-05-26T18:01:56Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Learning of Parameters in Behavior Trees for Movement Skills [0.9562145896371784]
振舞い木(BT)は、モジュラーと構成可能なスキルをサポートするポリシー表現を提供することができる。
本稿では,BTポリシーのパラメータをシミュレーションで学習し,追加のトレーニングを伴わずに物理ロボットに一般化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-27T13:46:39Z) - On the Emergence of Whole-body Strategies from Humanoid Robot
Push-recovery Learning [32.070068456106895]
シミュレーション環境における汎用的で堅牢なヒューマノイドプッシュリカバリポリシーのトレーニングに,モデルフリーな深層強化学習を適用する。
本手法は高次元全体ヒューマノイド制御を目標とし,iCubヒューマノイド上で検証を行った。
論文 参考訳(メタデータ) (2021-04-29T17:49:20Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - Adversarial Training is Not Ready for Robot Learning [55.493354071227174]
対人訓練は,ノルム有界摂動に耐性のあるディープラーニングモデルを訓練する有効な方法である。
敵訓練により得られたニューラルコントローラが3種類の欠陥を受けることを理論的および実験的に示す。
この結果から, ロボット学習にはまだ対応できていないことが示唆された。
論文 参考訳(メタデータ) (2021-03-15T07:51:31Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。