A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction
- URL: http://arxiv.org/abs/2002.03309v2
- Date: Tue, 11 Feb 2020 20:33:10 GMT
- Title: A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction
- Authors: Han B. Kim, Hieu Nguyen, Qingchu Jin, Sharmila Tamby, Tatiana Gelaf
Romer, Eric Sung, Ran Liu, Joseph Greenstein, Jose I. Suarez, Christian
Storm, Raimond Winslow, Robert D. Stevens
- Abstract summary: The aim of this study was to build computational models to predict post-CA outcome.
We hypothesized that model performance could be enhanced by integrating physiological time series (PTS) data and by training machine learning (ML) classifiers.
Results attest to the effectiveness of ML models for post-CA predictive modeling and suggest that PTS recorded in very early phase after resuscitation encode short-term outcome probabilities.
- Score: 0.7930054475711718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Patients resuscitated from cardiac arrest (CA) face a high risk of
neurological disability and death, however pragmatic methods are lacking for
accurate and reliable prognostication. The aim of this study was to build
computational models to predict post-CA outcome by leveraging high-dimensional
patient data available early after admission to the intensive care unit (ICU).
We hypothesized that model performance could be enhanced by integrating
physiological time series (PTS) data and by training machine learning (ML)
classifiers. We compared three models integrating features extracted from the
electronic health records (EHR) alone, features derived from PTS collected in
the first 24hrs after ICU admission (PTS24), and models integrating PTS24 and
EHR. Outcomes of interest were survival and neurological outcome at ICU
discharge. Combined EHR-PTS24 models had higher discrimination (area under the
receiver operating characteristic curve [AUC]) than models which used either
EHR or PTS24 alone, for the prediction of survival (AUC 0.85, 0.80 and 0.68
respectively) and neurological outcome (0.87, 0.83 and 0.78). The best ML
classifier achieved higher discrimination than the reference logistic
regression model (APACHE III) for survival (AUC 0.85 vs 0.70) and neurological
outcome prediction (AUC 0.87 vs 0.75). Feature analysis revealed previously
unknown factors to be associated with post-CA recovery. Results attest to the
effectiveness of ML models for post-CA predictive modeling and suggest that PTS
recorded in very early phase after resuscitation encode short-term outcome
probabilities.
Related papers
- Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Learning Clinical Concepts for Predicting Risk of Progression to Severe
COVID-19 [17.781861866125023]
Using data from a major healthcare provider, we develop survival models predicting severe COVID-19 progression.
We develop two sets of high-performance risk scores: (i) an unconstrained model built from all available features; and (ii) a pipeline that learns a small set of clinical concepts before training a risk predictor.
arXiv Detail & Related papers (2022-08-28T02:59:35Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
We propose predictive models that estimate GBM patients' health status of one-year after treatments.
We used total of 467 GBM patients' clinical profile consists of 13 features and two follow-up dates.
Our machine learning models suggest that the top three prognostic factors for GBM patient survival were MGMT gene promoter, the extent of resection, and age.
arXiv Detail & Related papers (2021-08-30T07:56:34Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
Elderly patients with MODS have high risk of death and poor prognosis.
This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS.
arXiv Detail & Related papers (2020-01-28T17:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.