Weighted Average Precision: Adversarial Example Detection in the Visual
Perception of Autonomous Vehicles
- URL: http://arxiv.org/abs/2002.03751v2
- Date: Mon, 4 May 2020 00:50:00 GMT
- Title: Weighted Average Precision: Adversarial Example Detection in the Visual
Perception of Autonomous Vehicles
- Authors: Yilan Li, Senem Velipasalar
- Abstract summary: We propose a novel distance metric for practical autonomous driving object detection outputs.
We show how our approach outperforms existing single-frame-mAP based AE detections by increasing 17.76% accuracy of performance.
- Score: 10.72357267154474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have shown that neural networks are vulnerable to carefully
crafted adversarial examples (AE). By adding small perturbations to input
images, AEs are able to make the victim model predicts incorrect outputs.
Several research work in adversarial machine learning started to focus on the
detection of AEs in autonomous driving. However, the existing studies either
use preliminary assumption on outputs of detections or ignore the tracking
system in the perception pipeline. In this paper, we firstly propose a novel
distance metric for practical autonomous driving object detection outputs.
Then, we bridge the gap between the current AE detection research and the
real-world autonomous systems by providing a temporal detection algorithm,
which takes the impact of tracking system into consideration. We perform
evaluation on Berkeley Deep Drive (BDD) and CityScapes datasets to show how our
approach outperforms existing single-frame-mAP based AE detections by
increasing 17.76% accuracy of performance.
Related papers
- UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
The problem of reliably detecting and geolocating objects of different classes in soft real-time is essential in many application areas, such as Search and Rescue performed using Unmanned Aerial Vehicles (UAVs)
This research addresses the complementary problems of system contextual vision-based detector selection, allocation, and execution.
The detection results are fused using a method for building maps of salient locations which takes advantage of a novel sensor model for vision-based detections for both positive and negative observations.
arXiv Detail & Related papers (2024-08-29T13:00:37Z) - Run-time Monitoring of 3D Object Detection in Automated Driving Systems Using Early Layer Neural Activation Patterns [12.384452095533396]
Integrity monitoring of automated driving systems (ADS) is paramount for ensuring safety.
Recent advancements in deep neural network (DNN)-based object detectors, their susceptibility to detection errors remains a significant concern.
arXiv Detail & Related papers (2024-04-11T12:24:47Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
Driver distractions are known to be the dominant cause of road accidents.
State-of-the-art methods prioritize accuracy while ignoring latency.
We propose time-effective detection models by neglecting the temporal relation between video frames.
arXiv Detail & Related papers (2022-10-17T21:22:41Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - A Quality Index Metric and Method for Online Self-Assessment of
Autonomous Vehicles Sensory Perception [164.93739293097605]
We propose a novel evaluation metric, named as the detection quality index (DQI), which assesses the performance of camera-based object detection algorithms.
We have developed a superpixel-based attention network (SPA-NET) that utilizes raw image pixels and superpixels as input to predict the proposed DQI evaluation metric.
arXiv Detail & Related papers (2022-03-04T22:16:50Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.