Unsupervised Adaptive Neural Network Regularization for Accelerated
Radial Cine MRI
- URL: http://arxiv.org/abs/2002.03820v1
- Date: Mon, 10 Feb 2020 14:47:20 GMT
- Title: Unsupervised Adaptive Neural Network Regularization for Accelerated
Radial Cine MRI
- Authors: Andreas Kofler, Marc Dewey, Tobias Schaeffter, Christoph Kolbitsch and
Markus Haltmeier
- Abstract summary: We propose an iterative reconstruction scheme for 2D radial cine MRI based on ground truth-free unsupervised learning of shallow convolutional neural networks.
The network is trained to approximate patches of the current estimate of the solution during the reconstruction.
- Score: 3.6280929178575994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose an iterative reconstruction scheme (ALONE - Adaptive
Learning Of NEtworks) for 2D radial cine MRI based on ground truth-free
unsupervised learning of shallow convolutional neural networks. The network is
trained to approximate patches of the current estimate of the solution during
the reconstruction. By imposing a shallow network topology and constraining the
$L_2$-norm of the learned filters, the network's representation power is
limited in order not to be able to recover noise. Therefore, the network can be
interpreted to perform a low dimensional approximation of the patches for
stabilizing the inversion process. We compare the proposed reconstruction
scheme to two ground truth-free reconstruction methods, namely a well known
Total Variation (TV) minimization and an unsupervised adaptive Dictionary
Learning (DIC) method. The proposed method outperforms both methods with
respect to all reported quantitative measures. Further, in contrast to DIC,
where the sparse approximation of the patches involves the solution of a
complex optimization problem, ALONE only requires a forward pass of all patches
through the shallow network and therefore significantly accelerates the
reconstruction.
Related papers
- Improving Generalization of Deep Neural Networks by Optimum Shifting [33.092571599896814]
We propose a novel method called emphoptimum shifting, which changes the parameters of a neural network from a sharp minimum to a flatter one.
Our method is based on the observation that when the input and output of a neural network are fixed, the matrix multiplications within the network can be treated as systems of under-determined linear equations.
arXiv Detail & Related papers (2024-05-23T02:31:55Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
We show that for a particular choice of mask weights that do not depend on the learning targets, this kernel is equivalent to the NTK of the gated ReLU network on the training data.
A consequence of this lack of dependence on the targets is that the NTK cannot perform better than the optimal MKL kernel on the training set.
arXiv Detail & Related papers (2023-09-26T17:42:52Z) - Convergence Guarantees of Overparametrized Wide Deep Inverse Prior [1.5362025549031046]
Inverse Priors is an unsupervised approach to transform a random input into an object whose image under the forward model matches the observation.
We provide overparametrization bounds under which such network trained via continuous-time gradient descent will converge exponentially fast with high probability.
This work is thus a first step towards a theoretical understanding of overparametrized DIP networks, and more broadly it participates to the theoretical understanding of neural networks in inverse problem settings.
arXiv Detail & Related papers (2023-03-20T16:49:40Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Tunable Subnetwork Splitting for Model-parallelism of Neural Network
Training [12.755664985045582]
We propose a Tunable Subnetwork Splitting Method (TSSM) to tune the decomposition of deep neural networks.
Our proposed TSSM can achieve significant speedup without observable loss of training accuracy.
arXiv Detail & Related papers (2020-09-09T01:05:12Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Interpretable Deep Recurrent Neural Networks via Unfolding Reweighted
$\ell_1$-$\ell_1$ Minimization: Architecture Design and Generalization
Analysis [19.706363403596196]
This paper develops a novel deep recurrent neural network (coined reweighted-RNN) by the unfolding of a reweighted minimization algorithm.
To the best of our knowledge, this is the first deep unfolding method that explores reweighted minimization.
The experimental results on the moving MNIST dataset demonstrate that the proposed deep reweighted-RNN significantly outperforms existing RNN models.
arXiv Detail & Related papers (2020-03-18T17:02:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.