Identification of symmetry-protected topological states on noisy quantum
computers
- URL: http://arxiv.org/abs/2002.04620v3
- Date: Tue, 22 Sep 2020 11:36:55 GMT
- Title: Identification of symmetry-protected topological states on noisy quantum
computers
- Authors: Daniel Azses, Rafael Haenel, Yehuda Naveh, Robert Raussendorf, Eran
Sela, Emanuele G. Dalla Torre
- Abstract summary: topological states can be identified by distinctive degeneracies in their entanglement spectrum.
We propose and realize two complementary protocols to probe these degeneracies.
They invoke the creation of a cluster state, and are implemented on an IBM quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying topological properties is a major challenge because, by
definition, topological states do not have a local order parameter. While a
generic solution to this challenge is not available yet, a broad class of
topological states, namely symmetry-protected topological (SPT) states, can be
identified by distinctive degeneracies in their entanglement spectrum. Here, we
propose and realize two complementary protocols to probe these degeneracies
based on, respectively, symmetry-resolved entanglement entropies and
measurement-based computational algorithms. The two protocols link quantum
information processing to the classification of SPT phases of matter. They
invoke the creation of a cluster state, and are implemented on an IBM quantum
computer. The experimental findings are compared to noisy simulations, allowing
us to study the stability of topological states to perturbations and noise.
Related papers
- Computational Characterization of Symmetry-Protected Topological Phases in Open Quantum Systems [0.0]
Gate fidelity is a measure of the computational power of the measurement-based quantum computation.
We show that the fidelity for the identity gate, which is given by the sum of the non-local string order parameters, plays an important role.
arXiv Detail & Related papers (2024-05-28T17:00:17Z) - Replica topological order in quantum mixed states and quantum error
correction [0.0]
Topological phases of matter offer a promising platform for quantum computation and quantum error correction.
We give two definitions for replica topological order in mixed states, which involve $n$ copies of density matrices of the mixed state.
We show that in the quantum-topological phase, there exists a postselection-based error correction protocol that recovers the quantum information, while in the classical-topological phase, the quantum information has decohere and cannot be fully recovered.
arXiv Detail & Related papers (2024-02-14T19:00:03Z) - Quantum topological data analysis via the estimation of the density of
states [17.857341127079305]
We develop a quantum topological data analysis protocol based on the estimation of the density of states (DOS) of the Laplacian.
We test our protocol on noiseless and noisy quantum simulators and run examples on IBM quantum processors.
arXiv Detail & Related papers (2023-12-12T09:43:04Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Intrinsic Mixed-state Quantum Topological Order [4.41737598556146]
We show that decoherence can give rise to new types of topological order.
We construct concrete examples by proliferating fermionic anyons in the toric code via local quantum channels.
The resulting mixed states retain long-range entanglement, which manifests in the nonzero topological entanglement negativity.
arXiv Detail & Related papers (2023-07-25T18:34:10Z) - Relative homotopy approach to topological phases in quantum walks [0.08896991256227595]
We show that for translation symmetric systems they can be characterized by a homotopy relative to special points.
We propose a new topological invariant corresponding to this concept.
This invariant indicates the number of edge states at the interface between two distinct phases.
arXiv Detail & Related papers (2022-09-26T16:27:56Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.