論文の概要: RFN: A Random-Feature Based Newton Method for Empirical Risk
Minimization in Reproducing Kernel Hilbert Spaces
- arxiv url: http://arxiv.org/abs/2002.04753v4
- Date: Mon, 6 Jun 2022 13:35:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 19:12:04.466566
- Title: RFN: A Random-Feature Based Newton Method for Empirical Risk
Minimization in Reproducing Kernel Hilbert Spaces
- Title(参考訳): RFN:カーネルヒルベルト空間再生における経験的リスク最小化のためのランダム機能に基づくニュートン法
- Authors: Ting-Jui Chang, Shahin Shahrampour
- Abstract要約: 大規模な有限サム問題はニュートン法の効率的な変種を用いて解くことができ、ヘッセンはデータのサブサンプルによって近似される。
本稿では,このような問題に対して,ニュートン法を高速化するためにカーネル近似を自然に利用できることを考察する。
局所超線型収束と大域線形収束を両立させる新しい2次アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 14.924672048447334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In supervised learning using kernel methods, we often encounter a large-scale
finite-sum minimization over a reproducing kernel Hilbert space (RKHS).
Large-scale finite-sum problems can be solved using efficient variants of
Newton method, where the Hessian is approximated via sub-samples of data. In
RKHS, however, the dependence of the penalty function to kernel makes standard
sub-sampling approaches inapplicable, since the gram matrix is not readily
available in a low-rank form. In this paper, we observe that for this class of
problems, one can naturally use kernel approximation to speed up the Newton
method. Focusing on randomized features for kernel approximation, we provide a
novel second-order algorithm that enjoys local superlinear convergence and
global linear convergence (with high probability). We derive the theoretical
lower bound for the number of random features required for the approximated
Hessian to be close to the true Hessian in the norm sense. Our numerical
experiments on real-world data verify the efficiency of our method compared to
several benchmarks.
- Abstract(参考訳): カーネル手法を用いた教師付き学習では、再現カーネルヒルベルト空間(RKHS)上で大規模な有限サム最小化が発生することが多い。
大規模な有限サム問題はニュートン法の効率的な変種を用いて解くことができ、ヘッセンはデータのサブサンプルによって近似される。
しかし、RKHSでは、ペナルティ関数のカーネルへの依存は、グラム行列が低ランクの形で利用できないため、標準的なサブサンプリングアプローチを適用できない。
本稿では,このような問題に対して,ニュートン法を高速化するためにカーネル近似を自然に利用できることを考察する。
カーネル近似のランダム化特徴に着目し,局所超線形収束と大域的線形収束(高確率)を楽しむ2次アルゴリズムを提案する。
我々は、近似された Hessian がノルム意味で真の Hessian に近づくのに必要なランダムな特徴の数に対する理論的な下界を導出する。
実世界のデータに関する数値実験により,本手法の効率をいくつかのベンチマークと比較した。
関連論文リスト
- Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods [0.3222802562733786]
ヘシアン・アブラッシングに基づくサブサンプルニュートン法による有限サム予測対象関数の最小化について検討する。
これらの方法は不有効であり、ヘッセン近似の固定コストがかかる。
本稿では,新しい解析手法を提案し,その実用化に向けた課題を提案する。
論文 参考訳(メタデータ) (2024-08-14T03:27:48Z) - On the Approximation of Kernel functions [0.0]
論文はカーネル自体の近似に対処する。
単位立方体上のヒルベルト・ガウス核に対して、この論文は関連する固有関数の上界を確立する。
この改良により、Nystr"om法のような低階近似法が確かめられる。
論文 参考訳(メタデータ) (2024-03-11T13:50:07Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - The Optimality of Kernel Classifiers in Sobolev Space [3.3253452228326332]
本稿では,カーネル分類器の統計的性能について検討する。
また,2eta(x)-1$の滑らかさを推定する簡単な手法を提案し,本手法を実データセットに適用する。
論文 参考訳(メタデータ) (2024-02-02T05:23:34Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
ニュートン法を用いて,滑らかで強凸な目的関数を考える。
最適段階において局所収束に遷移する普遍重み付き平均化スキームが存在することを示す。
論文 参考訳(メタデータ) (2022-04-20T07:14:21Z) - Nystr\"om Kernel Mean Embeddings [92.10208929236826]
Nystr"om法に基づく効率的な近似手法を提案する。
サブサンプルサイズの条件は標準の$n-1/2$レートを得るのに十分である。
本稿では,この結果の最大誤差と二次規則の近似への応用について論じる。
論文 参考訳(メタデータ) (2022-01-31T08:26:06Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels [26.57122949130266]
本アルゴリズムは,既存のカーネル近似法と比較して,より低い分散と近似誤差を達成する。
もともと選択されたカーネルの近似性が向上し、分類精度と回帰能力が向上する。
論文 参考訳(メタデータ) (2021-04-13T13:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。