論文の概要: On the Approximation of Kernel functions
- arxiv url: http://arxiv.org/abs/2403.06731v1
- Date: Mon, 11 Mar 2024 13:50:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 18:52:56.985154
- Title: On the Approximation of Kernel functions
- Title(参考訳): カーネル関数の近似について
- Authors: Paul Dommel and Alois Pichler
- Abstract要約: 論文はカーネル自体の近似に対処する。
単位立方体上のヒルベルト・ガウス核に対して、この論文は関連する固有関数の上界を確立する。
この改良により、Nystr"om法のような低階近似法が確かめられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Various methods in statistical learning build on kernels considered in
reproducing kernel Hilbert spaces. In applications, the kernel is often
selected based on characteristics of the problem and the data. This kernel is
then employed to infer response variables at points, where no explanatory data
were observed. The data considered here are located in compact sets in higher
dimensions and the paper addresses approximations of the kernel itself. The new
approach considers Taylor series approximations of radial kernel functions. For
the Gauss kernel on the unit cube, the paper establishes an upper bound of the
associated eigenfunctions, which grows only polynomially with respect to the
index. The novel approach substantiates smaller regularization parameters than
considered in the literature, overall leading to better approximations. This
improvement confirms low rank approximation methods such as the Nystr\"om
method.
- Abstract(参考訳): 統計学習における様々な手法は、ヒルベルト空間の再現において考慮されたカーネルの上に構築される。
アプリケーションでは、カーネルは問題とデータの特徴に基づいて選択されることが多い。
このカーネルは、説明データが観測されていない地点で応答変数を推測するために使われる。
ここで考慮されたデータは高次元のコンパクトな集合に位置し、論文はカーネル自体の近似に対処する。
新しいアプローチでは、ラジアル核関数のテイラー級数近似を考える。
単位立方体上のガウス核に対して、この論文は関連する固有関数の上界を確立し、指数に関して多項式的にしか成長しない。
この新しいアプローチは、文献で考慮されるよりも小さな正規化パラメータを置換し、全体としてはより良い近似をもたらす。
この改良により、Nystr\"om法のような低階近似法が確かめられる。
関連論文リスト
- Optimal Kernel Choice for Score Function-based Causal Discovery [92.65034439889872]
本稿では,データに最も適合する最適なカーネルを自動的に選択する,一般化スコア関数内のカーネル選択手法を提案する。
合成データと実世界のベンチマークの両方で実験を行い,提案手法がカーネル選択法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-14T09:32:20Z) - MEP: Multiple Kernel Learning Enhancing Relative Positional Encoding Length Extrapolation [5.298814565953444]
相対的な位置符号化法は、単一のカーネル関数を実装することで、長さ外挿問題に対処する。
本研究では,異なるカーネル関数を結合する重み付き平均を用いた,MEPと呼ばれる新しい相対的位置符号化手法を提案する。
我々は,新しい学習可能なパラメータを必要としないパラメータフリー変種と,最先端技術を統合することのできるパラメータ化変種という,2つの異なる方法を提案する。
論文 参考訳(メタデータ) (2024-03-26T13:38:06Z) - Decentralized Riemannian Conjugate Gradient Method on the Stiefel
Manifold [59.73080197971106]
本稿では,最急降下法よりも高速に収束する一階共役最適化法を提案する。
これはスティーフェル多様体上の大域収束を達成することを目的としている。
論文 参考訳(メタデータ) (2023-08-21T08:02:16Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
本稿では,一般的なガウスカーネルと,ランダムな特徴近似を用いてカーネルベースモデルを線形化する手法に着目する。
このような手法は、高周波データをモデル化する際、悪い結果をもたらすことを示すとともに、カーネル近似と下流性能を大幅に改善する新たなローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-04-12T09:52:36Z) - Kernel Mean Estimation by Marginalized Corrupted Distributions [96.9272743070371]
カーネル平均をヒルベルト空間で推定することは、多くのカーネル学習アルゴリズムにおいて重要な要素である。
本稿では,カーネル平均推定器としてカーネル平均推定器を提案する。
論文 参考訳(メタデータ) (2021-07-10T15:11:28Z) - Kernel Identification Through Transformers [54.3795894579111]
カーネル選択はガウス過程(GP)モデルの性能決定において中心的な役割を果たす。
この研究は、高次元GP回帰モデルのためのカスタムカーネル関数を構築するという課題に対処する。
KITT: Kernel Identification through Transformersを提案する。
論文 参考訳(メタデータ) (2021-06-15T14:32:38Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels [26.57122949130266]
本アルゴリズムは,既存のカーネル近似法と比較して,より低い分散と近似誤差を達成する。
もともと選択されたカーネルの近似性が向上し、分類精度と回帰能力が向上する。
論文 参考訳(メタデータ) (2021-04-13T13:56:50Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z) - RFN: A Random-Feature Based Newton Method for Empirical Risk
Minimization in Reproducing Kernel Hilbert Spaces [14.924672048447334]
大規模な有限サム問題はニュートン法の効率的な変種を用いて解くことができ、ヘッセンはデータのサブサンプルによって近似される。
本稿では,このような問題に対して,ニュートン法を高速化するためにカーネル近似を自然に利用できることを考察する。
局所超線型収束と大域線形収束を両立させる新しい2次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-12T01:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。