論文の概要: Nystr\"om Kernel Mean Embeddings
- arxiv url: http://arxiv.org/abs/2201.13055v1
- Date: Mon, 31 Jan 2022 08:26:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 15:08:43.224496
- Title: Nystr\"om Kernel Mean Embeddings
- Title(参考訳): nystr\"omカーネルは埋め込みを意味する
- Authors: Antoine Chatalic, Nicolas Schreuder, Alessandro Rudi and Lorenzo
Rosasco
- Abstract要約: Nystr"om法に基づく効率的な近似手法を提案する。
サブサンプルサイズの条件は標準の$n-1/2$レートを得るのに十分である。
本稿では,この結果の最大誤差と二次規則の近似への応用について論じる。
- 参考スコア(独自算出の注目度): 92.10208929236826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kernel mean embeddings are a powerful tool to represent probability
distributions over arbitrary spaces as single points in a Hilbert space. Yet,
the cost of computing and storing such embeddings prohibits their direct use in
large-scale settings. We propose an efficient approximation procedure based on
the Nystr\"om method, which exploits a small random subset of the dataset. Our
main result is an upper bound on the approximation error of this procedure. It
yields sufficient conditions on the subsample size to obtain the standard
$n^{-1/2}$ rate while reducing computational costs. We discuss applications of
this result for the approximation of the maximum mean discrepancy and
quadrature rules, and illustrate our theoretical findings with numerical
experiments.
- Abstract(参考訳): カーネル平均埋め込みは任意の空間上の確率分布をヒルベルト空間の単一点として表す強力なツールである。
しかし、そのような組み込みの計算と保存のコストは、大規模な環境での直接使用を禁止している。
我々は,データセットの小さな乱数部分集合を利用するNystr\"om法に基づく効率的な近似手法を提案する。
我々の主な結果は、この手順の近似誤差の上界である。
これは、計算コストを減らしながら標準の$n^{-1/2}$レートを得るのに十分な条件を与える。
この結果の最大平均偏差と二次則の近似への応用について検討し, 数値実験により理論的知見を明らかにした。
関連論文リスト
- Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via
Leverage Scores Sampling [16.992480926905067]
本稿では,積分を対象確率測度に対して,積分の点的評価のみを用いて近似する問題を考察する。
本稿では,初期観測から得られる近似レバレッジスコアを用いて,$mn$サンプルのランダムな小部分集合を均一に描画するか,あるいは近似的に評価する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T17:44:18Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
カーネルベース最適輸送(OT)推定器は、サンプルからOT問題に対処するための代替的機能的推定手順を提供する。
SSN法は, 標準正規性条件下でのグローバル収束率$O (1/sqrtk)$, 局所二次収束率を達成できることを示す。
論文 参考訳(メタデータ) (2023-10-21T18:48:45Z) - Robust Sparse Mean Estimation via Incremental Learning [15.536082641659423]
そこで本研究では, 部分的に破損したサンプルの集合から, k$-sparse平均を推定することを目的とする, 頑健な平均推定問題について検討する。
両課題を適度な条件下で克服する簡易平均推定器を提案する。
私たちのメソッドは、スパーシティレベル$k$に関する事前の知識を必要としない。
論文 参考訳(メタデータ) (2023-05-24T16:02:28Z) - Compressed Empirical Measures (in finite dimensions) [4.73194777046253]
有限次元再生核ヒルベルト空間(RKHS)の文脈における経験的尺度の圧縮手法について検討する。
そのようなコアセットがどれほど大きいかを制御する重要な量は、経験的凸集合に含まれる経験的測度の周りにある最大の球の大きさである。
論文 参考訳(メタデータ) (2022-04-19T12:25:41Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
測定から学習した線形モデルの定量化の問題を考える。
この設定の下では、ミニマックスリスクに対する情報理論の下限を導出する。
本稿では,2層ReLUニューラルネットワークに対して,提案手法と上界を拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T02:39:04Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - One-Bit Compressed Sensing via One-Shot Hard Thresholding [7.594050968868919]
1ビット圧縮センシングの問題は、いくつかのバイナリ測定からスパース信号を推定することである。
広範に使われている非制約の幅の概念から遠ざかる、斬新で簡潔な分析法を提案する。
論文 参考訳(メタデータ) (2020-07-07T17:28:03Z) - Debiasing Distributed Second Order Optimization with Surrogate Sketching
and Scaled Regularization [101.5159744660701]
分散第2次最適化において、標準的な戦略は、データの小さなスケッチやバッチに基づいて、多くの局所的な見積もりを平均化することである。
本稿では,分散二階法における収束率の理論的および実証的改善を両立させるため,局所的な推定を嫌悪する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-02T18:08:14Z) - RFN: A Random-Feature Based Newton Method for Empirical Risk
Minimization in Reproducing Kernel Hilbert Spaces [14.924672048447334]
大規模な有限サム問題はニュートン法の効率的な変種を用いて解くことができ、ヘッセンはデータのサブサンプルによって近似される。
本稿では,このような問題に対して,ニュートン法を高速化するためにカーネル近似を自然に利用できることを考察する。
局所超線型収束と大域線形収束を両立させる新しい2次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-12T01:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。