論文の概要: Self-explaining AI as an alternative to interpretable AI
- arxiv url: http://arxiv.org/abs/2002.05149v6
- Date: Thu, 2 Jul 2020 19:03:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 18:43:27.877987
- Title: Self-explaining AI as an alternative to interpretable AI
- Title(参考訳): 解釈可能なAIの代替としての自己説明型AI
- Authors: Daniel C. Elton
- Abstract要約: 二重降下は、深層ニューラルネットワークがデータポイント間のスムーズな補間によって動作することを示している。
複雑な現実世界のデータに基づいてトレーニングされたニューラルネットワークは、本質的に解釈が困難で、外挿を求めると失敗する傾向がある。
自己説明型AIは、決定と説明の両方の信頼性レベルとともに、人間に理解可能な説明を提供することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to explain decisions made by AI systems is highly sought after,
especially in domains where human lives are at stake such as medicine or
autonomous vehicles. While it is often possible to approximate the input-output
relations of deep neural networks with a few human-understandable rules, the
discovery of the double descent phenomena suggests that such approximations do
not accurately capture the mechanism by which deep neural networks work. Double
descent indicates that deep neural networks typically operate by smoothly
interpolating between data points rather than by extracting a few high level
rules. As a result, neural networks trained on complex real world data are
inherently hard to interpret and prone to failure if asked to extrapolate. To
show how we might be able to trust AI despite these problems we introduce the
concept of self-explaining AI. Self-explaining AIs are capable of providing a
human-understandable explanation of each decision along with confidence levels
for both the decision and explanation. For this approach to work, it is
important that the explanation actually be related to the decision, ideally
capturing the mechanism used to arrive at the explanation. Finally, we argue it
is important that deep learning based systems include a "warning light" based
on techniques from applicability domain analysis to warn the user if a model is
asked to extrapolate outside its training distribution. For a video
presentation of this talk see https://www.youtube.com/watch?v=Py7PVdcu7WY& .
- Abstract(参考訳): AIシステムによってなされる決定を説明する能力は、特に医療や自動運転車といった人間の生命が危険にさらされている領域において、特に注目されている。
ディープニューラルネットワークの入出力関係を人間の理解可能なルールで近似することはしばしば可能であるが、二重降下現象の発見は、ディープニューラルネットワークが動作するメカニズムを正確に捉えていないことを示唆している。
二重降下は、ディープニューラルネットワークが通常、いくつかの高レベルのルールを抽出するよりも、データポイント間のスムーズな補間によって動作することを示している。
その結果、複雑な実世界のデータに基づいてトレーニングされたニューラルネットワークは、外挿を求めると本質的に解釈が難しく、失敗に陥りがちである。
これらの問題にもかかわらず、どのようにAIを信頼できるかを示すために、自己説明型AIの概念を紹介します。
自己説明型AIは、決定と説明の両方に対する信頼レベルとともに、各決定について人間に理解可能な説明を提供することができる。
このアプローチが機能するためには、説明が実際に決定に関連し、理想的には説明にたどり着くメカニズムを捉えることが重要である。
最後に、ディープラーニングベースのシステムには、適用性ドメイン分析のテクニックに基づいた「警告光」が含まれており、モデルにトレーニング配布外の外挿を依頼するとユーザーに警告することが重要であると論じる。
この講演のビデオプレゼンテーションはhttps://www.youtube.com/watch?
v=py7pvdcu7wy&。
関連論文リスト
- Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Behave-XAI: Deep Explainable Learning of Behavioral Representational Data [0.0]
行動マイニングのシナリオでは、説明可能なAIや人間の理解可能なAIを使用します。
まず、深層畳み込みニューラルネットワークアーキテクチャにおける行動マイニング問題を定式化する。
モデルが開発されると、ユーザーの前で説明が提示される。
論文 参考訳(メタデータ) (2022-12-30T18:08:48Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
システムモデルを自動的に導出する際、AIアルゴリズムは人間には検出できないデータで関係を学習する。
モデルが複雑になればなるほど、人間が意思決定の理由を理解するのが難しくなる。
この研究は、この話題に関する広範な文献調査を提供し、その大部分は、他の調査から成っている。
論文 参考訳(メタデータ) (2022-10-11T06:21:47Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
我々は、決定を完全に理解するためには、関連する特徴に関する知識だけでなく、無関係な情報の認識もAIシステムのユーザーのメンタルモデルの作成に大きく貢献すると主張している。
私たちのアプローチは、Alterfactual Explanations(Alterfactual Explanations)と呼ばれ、AIの入力の無関係な特徴が変更された別の現実を示すことに基づいています。
我々は,AIの推論のさまざまな側面を,反事実的説明法よりも理解するために,人工的説明が適していることを示す。
論文 参考訳(メタデータ) (2022-07-19T16:20:37Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Does Explainable Artificial Intelligence Improve Human Decision-Making? [17.18994675838646]
我々は、AI(制御)を使わずに客観的な人間の意思決定精度を、AI予測(説明なし)とAI予測(説明なし)とを比較して評価する。
あらゆる種類のAI予測は、ユーザの判断精度を改善する傾向がありますが、説明可能なAIが有意義な影響を与えるという決定的な証拠はありません。
我々の結果は、少なくともいくつかの状況において、説明可能なAIが提供する「なぜ」情報は、ユーザの意思決定を促進することができないことを示唆している。
論文 参考訳(メタデータ) (2020-06-19T15:46:13Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
我々は、AIモデルを用いて、偽りの説明を作成し、検出する方法について検討する。
実験的な評価として,GradCAMによるテキスト分類と説明の変更に着目した。
被験者200名を対象に, 偽装説明がユーザに与える影響について検討した。
論文 参考訳(メタデータ) (2020-01-21T16:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。