論文の概要: Ensemble methods for neural network-based weather forecasts
- arxiv url: http://arxiv.org/abs/2002.05398v3
- Date: Mon, 4 Jan 2021 13:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 13:49:53.182137
- Title: Ensemble methods for neural network-based weather forecasts
- Title(参考訳): ニューラルネットワークによる天気予報のためのアンサンブル手法
- Authors: Sebastian Scher and Gabriele Messori
- Abstract要約: 我々は,決定論的ニューラルネットワーク天気予報システムをアンサンブル予測システムに変換することを目指している。
ランダムな初期摂動、ニューラルネットワークの再学習、ネットワークにおけるランダムなドロップアウトの使用、特異ベクトル分解による初期摂動の生成の4つの方法をテストする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensemble weather forecasts enable a measure of uncertainty to be attached to
each forecast, by computing the ensemble's spread. However, generating an
ensemble with a good spread-error relationship is far from trivial, and a wide
range of approaches to achieve this have been explored -- chiefly in the
context of numerical weather prediction models. Here, we aim to transform a
deterministic neural network weather forecasting system into an ensemble
forecasting system. We test four methods to generate the ensemble: random
initial perturbations, retraining of the neural network, use of random dropout
in the network, and the creation of initial perturbations with singular vector
decomposition. The latter method is widely used in numerical weather prediction
models, but is yet to be tested on neural networks. The ensemble mean forecasts
obtained from these four approaches all beat the unperturbed neural network
forecasts, with the retraining method yielding the highest improvement.
However, the skill of the neural network forecasts is systematically lower than
that of state-of-the-art numerical weather prediction models.
- Abstract(参考訳): アンサンブルの天気予報は、アンサンブルの広がりを計算することによって、各予測に不確実性の尺度を付けることができる。
しかし、スプレッド・エラー関係の良好なアンサンブルの生成は、ささいなことではなく、これを達成するための幅広いアプローチが、主に数値気象予測モデル(英語版)の文脈で検討されてきた。
本稿では,決定論的ニューラルネットワーク天気予報システムをアンサンブル予測システムに変換することを目的とする。
我々は、ランダム初期摂動、ニューラルネットワークの再訓練、ネットワークにおけるランダムなドロップアウトの使用、特異ベクトル分解による初期摂動の生成の4つの手法をテストした。
後者の手法は数値気象予測モデルで広く使われているが、ニューラルネットワークではまだテストされていない。
これら4つのアプローチから得られたアンサンブル平均予測は、すべて未成熟のニューラルネットワーク予測を破り、リトレーニング手法は最高の改善をもたらす。
しかし、ニューラルネットワークの予測のスキルは、最先端の数値気象予測モデルよりも体系的に低い。
関連論文リスト
- Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
コンボリューション・ニューラル・ネットワーク(CNN)とコンボリューション・コンボリューション・アロイング・モデル(CAM)予測を併用する。
CGANは決定論的CAM予測から合成アンサンブルメンバーを作成するように設計されている。
この手法は,BSS(Brier Skill Score)を最大20%の精度で予測できる。
論文 参考訳(メタデータ) (2023-10-09T18:02:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Computing the ensemble spread from deterministic weather predictions
using conditional generative adversarial networks [0.0]
本稿では,深層学習アルゴリズムを用いて,アンサンブル予測システムの統計的特性を学習することを提案する。
訓練が終わると、将来のアンサンブル予測を得るためには、コストのかかるアンサンブル予測システムがもはや不要になる。
論文 参考訳(メタデータ) (2022-05-18T19:10:38Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Post-processing Multi-Model Medium-Term Precipitation Forecasts Using
Convolutional Neural Networks [0.0]
画素単位の予測を後処理する代わりに、入力予測画像を組み合わせ、完全な畳み込みニューラルネットワークを用いて確率的出力予測画像に変換する。
CNNは正規化ロジスティック回帰を上回りませんでした。
論文 参考訳(メタデータ) (2021-05-14T19:30:48Z) - A computationally efficient neural network for predicting weather
forecast probabilities [0.0]
ニューラルネットワークを用いて1つの出力値ではなく確率密度関数を予測するという,新しいアプローチを採用する。
これにより、ニューラルネットワーク予測における不確実性とスキルメトリクスの両方の計算が可能になる。
このアプローチは純粋にデータ駆動であり、ニューラルネットワークはWeatherBenchデータセット上で訓練される。
論文 参考訳(メタデータ) (2021-03-26T12:28:15Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。