論文の概要: Post-processing Multi-Model Medium-Term Precipitation Forecasts Using
Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2105.07043v1
- Date: Fri, 14 May 2021 19:30:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:27:41.856327
- Title: Post-processing Multi-Model Medium-Term Precipitation Forecasts Using
Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いたマルチモデル中期降雨予測
- Authors: Bob de Ruiter
- Abstract要約: 画素単位の予測を後処理する代わりに、入力予測画像を組み合わせ、完全な畳み込みニューラルネットワークを用いて確率的出力予測画像に変換する。
CNNは正規化ロジスティック回帰を上回りませんでした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The goal of this study was to improve the post-processing of precipitation
forecasts using convolutional neural networks (CNNs). Instead of
post-processing forecasts on a per-pixel basis, as is usually done when
employing machine learning in meteorological post-processing, input forecast
images were combined and transformed into probabilistic output forecast images
using fully convolutional neural networks. CNNs did not outperform regularized
logistic regression. Additionally, an ablation analysis was performed.
Combining input forecasts from a global low-resolution weather model and a
regional high-resolution weather model improved performance over either one.
- Abstract(参考訳): 本研究の目的は,畳み込みニューラルネットワーク(CNN)を用いた降水予測の処理後の改善である。
気象後処理で機械学習を使用する場合のように、ピクセル単位の予測を後処理する代わりに、入力予測画像を組み合わせ、完全な畳み込みニューラルネットワークを用いて確率的出力予測画像に変換する。
CNNは正規化ロジスティック回帰を上回りませんでした。
また,アブレーション解析を行った。
グローバル低解像度気象モデルと地域高解像度気象モデルからの入力予測を組み合わせることで、どちらのモデルよりも性能が向上した。
関連論文リスト
- Graph Neural Networks and Spatial Information Learning for Post-Processing Ensemble Weather Forecasts [1.474723404975345]
本稿では,アンサンブル後処理のためのグラフニューラルネットワークアーキテクチャを提案する。
欧州における2m温度予測のケーススタディでは、グラフニューラルネットワークモデルは、高度に競争力のあるニューラルネットワークベースの後処理法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-07-08T18:39:44Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
コンボリューション・ニューラル・ネットワーク(CNN)とコンボリューション・コンボリューション・アロイング・モデル(CAM)予測を併用する。
CGANは決定論的CAM予測から合成アンサンブルメンバーを作成するように設計されている。
この手法は,BSS(Brier Skill Score)を最大20%の精度で予測できる。
論文 参考訳(メタデータ) (2023-10-09T18:02:11Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Ensemble methods for neural network-based weather forecasts [0.0]
我々は,決定論的ニューラルネットワーク天気予報システムをアンサンブル予測システムに変換することを目指している。
ランダムな初期摂動、ニューラルネットワークの再学習、ネットワークにおけるランダムなドロップアウトの使用、特異ベクトル分解による初期摂動の生成の4つの方法をテストする。
論文 参考訳(メタデータ) (2020-02-13T09:28:21Z) - Error-feedback stochastic modeling strategy for time series forecasting
with convolutional neural networks [11.162185201961174]
本稿では,ランダム畳み込みネットワーク(ESM-CNN)ニューラル時系列予測タスクを構築するための新しいError-feedback Modeling (ESM)戦略を提案する。
提案したESM-CNNは、最先端のランダムニューラルネットワークを上回るだけでなく、トレーニングされた最先端のディープニューラルネットワークモデルと比較して、予測能力と計算オーバーヘッドの低減も実現している。
論文 参考訳(メタデータ) (2020-02-03T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。