A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
- URL: http://arxiv.org/abs/2401.09257v2
- Date: Wed, 10 Jul 2024 08:21:47 GMT
- Title: A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
- Authors: Feiyang Ye, Baijiong Lin, Xiaofeng Cao, Yu Zhang, Ivor Tsang,
- Abstract summary: We study the Multi-Objective Bi-Level Optimization (MOBLO) problem.
Existing gradient-based MOBLO algorithms need to compute the Hessian matrix.
We propose an efficient first-order multi-gradient method for MOBLO, called FORUM.
- Score: 7.097069899573992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the Multi-Objective Bi-Level Optimization (MOBLO) problem, where the upper-level subproblem is a multi-objective optimization problem and the lower-level subproblem is for scalar optimization. Existing gradient-based MOBLO algorithms need to compute the Hessian matrix, causing the computational inefficient problem. To address this, we propose an efficient first-order multi-gradient method for MOBLO, called FORUM. Specifically, we reformulate MOBLO problems as a constrained multi-objective optimization (MOO) problem via the value-function approach. Then we propose a novel multi-gradient aggregation method to solve the challenging constrained MOO problem. Theoretically, we provide the complexity analysis to show the efficiency of the proposed method and a non-asymptotic convergence result. Empirically, extensive experiments demonstrate the effectiveness and efficiency of the proposed FORUM method in different learning problems. In particular, it achieves state-of-the-art performance on three multi-task learning benchmark datasets. The code is available at https://github.com/Baijiong-Lin/FORUM.
Related papers
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
Most of the real-world problems are multimodal in nature that consists of multiple optimum values.
Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable.
We have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs.
arXiv Detail & Related papers (2022-08-23T16:18:27Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Multi-Objective Meta Learning [2.9932638148627104]
We propose a unified gradient-based Multi-Objective Meta Learning (MOML) framework.
We show the effectiveness of the proposed MOML framework in several meta learning problems.
arXiv Detail & Related papers (2021-02-14T10:23:09Z) - Meta-learning based Alternating Minimization Algorithm for Non-convex
Optimization [9.774392581946108]
We propose a novel solution for challenging non-problems of multiple variables.
Our proposed approach is able to achieve effective iterations in cases while other methods would typically fail.
arXiv Detail & Related papers (2020-09-09T10:45:00Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
This paper proposes a multiobjective deep reinforcement learning method to solve multiobjective optimization problem.
In our method, each subproblem is solved by an attention model, which can exploit the structure features as well as node features of input nodes.
arXiv Detail & Related papers (2020-02-13T12:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.