Achieving Heisenberg scaling by probe-ancilla interaction in quantum metrology
- URL: http://arxiv.org/abs/2407.16880v1
- Date: Tue, 23 Jul 2024 23:11:50 GMT
- Title: Achieving Heisenberg scaling by probe-ancilla interaction in quantum metrology
- Authors: Jingyi Fan, Shengshi Pang,
- Abstract summary: Heisenberg scaling is an ultimate precision limit of parameter estimation allowed by the principles of quantum mechanics.
We show that interactions between the probes and an ancillary system may also increase the precision of parameter estimation to surpass the standard quantum limit.
Our protocol features in two aspects: (i) the Heisenberg scaling can be achieved by a product state of the probes, (ii) mere local measurement on the ancilla is sufficient.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Heisenberg scaling is an ultimate precision limit of parameter estimation allowed by the principles of quantum mechanics, with no counterpart in the classical realm, and has been a long-pursued goal in quantum metrology. It has been known that interactions between the probes can help reach the Heisenberg scaling without entanglement. In this work, we show that interactions between the probes and the additional dimensions of an ancillary system may also increase the precision of parameter estimation to surpass the standard quantum limit and attain the Heisenberg scaling without entanglement, if the measurement scheme is properly designed. The quantum Fisher information exhibits periodic patterns over the evolution time, implying the existence of optimal time points for measurements that can maximize the quantum Fisher information. By implementing optimizations over the Hamiltonian, the initial states of the probes and the ancillary system, the interaction strength and the time points for measurements, our protocol achieves the Heisenberg scaling for the parameter of the probe Hamiltonian, in terms of both evolution time and probe number. Our protocol features in two aspects: (i) the Heisenberg scaling can be achieved by a product state of the probes, (ii) mere local measurement on the ancilla is sufficient, both of which reduce the quantum resources and the implementation complexity to achieve the Heisenberg scaling.
Related papers
- Qubit-assisted quantum metrology [2.4927008953071725]
We propose a quantum metrology protocol based on a two-step joint evolution of the probe system and an ancillary qubit.
We find that QFI can approach the Heisenberg scaling $N2$ with respect to the quantum number $N$, even when the probe system is prepared in a classical state.
arXiv Detail & Related papers (2024-04-19T06:25:13Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Squeezing and overcoming the Heisenberg scaling with spin-orbit coupled
quantum gases [0.0]
We show that quadratic scaling with the number of atoms can be facilitated via squeezed center-of-mass excitations of the atomic motion.
We identify corresponding optimal measurements and argue that even finite temperature as a source of decoherence is, in principle, rather favorable for the obtainable precision scaling.
arXiv Detail & Related papers (2022-11-18T18:58:06Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Exponential precision by reaching a quantum critical point [0.0]
We report a protocol that is capable of surpassing the quadratic scaling, and yields an exponential advantage.
The exponential advantage stems from the breakdown of the adiabatic condition close to a critical point.
Our findings unveil a novel quantum metrological protocol whose precision scaling goes beyond the paradigmatic Heisenberg limit.
arXiv Detail & Related papers (2021-12-21T14:46:33Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Global Heisenberg scaling in noisy and practical phase estimation [52.70356457590653]
Heisenberg scaling characterizes the ultimate precision of parameter estimation enabled by quantum mechanics.
We study the attainability of strong, global notions of Heisenberg scaling in the fundamental problem of phase estimation.
arXiv Detail & Related papers (2021-10-05T06:57:55Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Super-Heisenberg scaling in Hamiltonian parameter estimation in the
long-range Kitaev chain [2.3058787297835686]
We consider the estimation of the interaction strength in linear systems with long-range interactions.
We show that quantum control can improve the prefactor of the quantum Fisher information.
arXiv Detail & Related papers (2021-04-14T20:40:40Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.