Quantum scale estimation
- URL: http://arxiv.org/abs/2111.11921v3
- Date: Tue, 25 Oct 2022 00:57:58 GMT
- Title: Quantum scale estimation
- Authors: Jes\'us Rubio
- Abstract summary: Quantum scale estimation establishes the most precise framework for the estimation of scale parameters that is allowed by the laws of quantum mechanics.
The new framework is exploited to generalise scale-invariant global thermometry, as well as to address the estimation of the lifetime of an atomic state.
On a more conceptual note, the optimal strategy is employed to construct an observable for scale parameters, an approach which may serve as a template for a more systematic search of quantum observables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum scale estimation, as introduced and explored here, establishes the
most precise framework for the estimation of scale parameters that is allowed
by the laws of quantum mechanics. This addresses an important gap in quantum
metrology, since current practice focuses almost exclusively on the estimation
of phase and location parameters. For given prior probability and quantum
state, and using Bayesian principles, a rule to construct the optimal
probability-operator measurement is provided. Furthermore, the corresponding
minimum mean logarithmic error is identified. This is then generalised as to
accommodate the simultaneous estimation of multiple scale parameters, and a
procedure to classify practical measurements into optimal, almost-optimal or
sub-optimal is highlighted. As a means of illustration, the new framework is
exploited to generalise scale-invariant global thermometry, as well as to
address the estimation of the lifetime of an atomic state. On a more conceptual
note, the optimal strategy is employed to construct an observable for scale
parameters, an approach which may serve as a template for a more systematic
search of quantum observables. Quantum scale estimation thus opens a new line
of enquire - the precise measurement of scale parameters such as temperatures
and rates - within the quantum information sciences.
Related papers
- The Cramér-Rao approach and global quantum estimation of bosonic states [52.47029505708008]
It is unclear whether the Cram'er-Rao approach is applicable for global estimation instead of local estimation.
We find situations where the Cram'er-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting.
arXiv Detail & Related papers (2024-09-18T09:49:18Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations [0.0]
A major task in quantum sensing is to design the optimal protocol, i.e., the most precise one.
Here, we focus on the single-shot Bayesian setting, where the goal is to find the optimal initial state of the probe.
We leverage the formalism of higher-order operations to develop a method that finds a protocol that is close to the optimal one with arbitrary precision.
arXiv Detail & Related papers (2023-11-02T18:00:36Z) - Optimal estimation of pure states with displaced-null measurements [0.0]
We revisit the problem of estimating an unknown parameter of a pure quantum state.
We investigate null-measurement' strategies in which the experimenter aims to measure in a basis that contains a vector close to the true system state.
arXiv Detail & Related papers (2023-10-10T16:46:24Z) - Quantum metrology in the finite-sample regime [0.6299766708197883]
In quantum metrology, the ultimate precision of estimating an unknown parameter is often stated in terms of the Cram'er-Rao bound.
We propose to quantify the quality of a protocol by the probability of obtaining an estimate with a given accuracy.
arXiv Detail & Related papers (2023-07-12T18:00:04Z) - Estimating many properties of a quantum state via quantum reservoir
processing [2.5432391525687748]
We propose a general framework for constructing classical approximations of arbitrary quantum states with quantum reservoirs.
A key advantage of our method is that only a single local measurement setting is required for estimating arbitrary properties.
This estimation scheme is extendable to higher-dimensional systems and hybrid systems with non-identical local dimensions.
arXiv Detail & Related papers (2023-05-11T15:21:21Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Efficient qubit phase estimation using adaptive measurements [0.0]
Estimating the quantum phase of a physical system is a central problem in quantum parameter estimation theory.
Current methods to estimate quantum phases fail to reach the quantum Cram'er-Rao bound.
We propose a new adaptive scheme based on covariant measurements to circumvent this problem.
arXiv Detail & Related papers (2020-12-21T02:43:47Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.