論文の概要: Graph Prolongation Convolutional Networks: Explicitly Multiscale Machine
Learning on Graphs with Applications to Modeling of Cytoskeleton
- arxiv url: http://arxiv.org/abs/2002.05842v2
- Date: Mon, 6 Apr 2020 23:41:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 04:05:26.770893
- Title: Graph Prolongation Convolutional Networks: Explicitly Multiscale Machine
Learning on Graphs with Applications to Modeling of Cytoskeleton
- Title(参考訳): Graph Prolongation Convolutional Networks: グラフによるマルチスケール機械学習とサイト骨格モデリングへの応用
- Authors: C.B. Scott and Eric Mjolsness
- Abstract要約: 我々は新しいタイプのアンサンブルグラフ畳み込みネットワーク(GCN)モデルを定義する。
グラフの空間スケール間のマッピングに最適化された線形射影演算子を用いて、このアンサンブルモデルは、最終的な予測のために各スケールからの情報を集約することを学ぶ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We define a novel type of ensemble Graph Convolutional Network (GCN) model.
Using optimized linear projection operators to map between spatial scales of
graph, this ensemble model learns to aggregate information from each scale for
its final prediction. We calculate these linear projection operators as the
infima of an objective function relating the structure matrices used for each
GCN. Equipped with these projections, our model (a Graph
Prolongation-Convolutional Network) outperforms other GCN ensemble models at
predicting the potential energy of monomer subunits in a coarse-grained
mechanochemical simulation of microtubule bending. We demonstrate these
performance gains by measuring an estimate of the FLOPs spent to train each
model, as well as wall-clock time. Because our model learns at multiple scales,
it is possible to train at each scale according to a predetermined schedule of
coarse vs. fine training. We examine several such schedules adapted from the
Algebraic Multigrid (AMG) literature, and quantify the computational benefit of
each. We also compare this model to another model which features an optimized
coarsening of the input graph. Finally, we derive backpropagation rules for the
input of our network model with respect to its output, and discuss how our
method may be extended to very large graphs.
- Abstract(参考訳): 我々は新しいタイプのアンサンブルグラフ畳み込みネットワーク(GCN)モデルを定義する。
グラフの空間スケール間のマッピングに最適化された線形射影演算子を用いて、このアンサンブルモデルは、最終的な予測のために各スケールからの情報を集約することを学ぶ。
これらの線形射影作用素を、各gcnで使用される構造行列に関連する対象関数のインフィマとして計算する。
これらのプロジェクションを組み込んだモデル(グラフ長畳み込み畳み込みネットワーク)は、微小管曲げの粗粒度メカノケミカルシミュレーションにおいて、モノマーサブユニットのポテンシャルエネルギーを予測するために、他のGCNアンサンブルモデルより優れている。
本研究では,各モデルのトレーニングに費やしたFLOPの推定値と,ウォールクロック時間を測定することで,これらの性能向上を実証する。
我々のモデルは複数のスケールで学習するため、所定の粗いスケジュールと細かい訓練のスケジュールに従って各スケールで訓練することが可能である。
代数的マルチグリッド (amg) の文献から適応したこれらのスケジュールをいくつか検討し, それぞれの計算上の便益を定量化する。
また、このモデルと入力グラフの最適化された粗化を特徴とする別のモデルを比較する。
最後に,その出力に関するネットワークモデルの入力に対するバックプロパゲーションルールを導出し,その手法を非常に大きなグラフに拡張する方法について議論する。
関連論文リスト
- Topology-Agnostic Graph U-Nets for Scalar Field Prediction on Unstructured Meshes [2.4306216325375196]
TAG U-Netはグラフ畳み込みネットワークで、任意のメッシュやグラフ構造を入力できるようにトレーニングすることができる。
モデルは、各入力グラフの粗いバージョンを構築し、元のグラフ上のノードワイズ出力を予測するために、一連の畳み込みとプーリング操作を実行する。
論文 参考訳(メタデータ) (2024-10-08T22:27:35Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
本稿では,グラフ全体にわたってモデルを一般化するグラフ表現学習手法について検討する。
遷移行列の複数のパワーを推定するためにランダムな射影を用いることで、同型不変な特徴の集合を構築することができることを示す。
結果として得られる特徴は、ノードの局所的近傍に関する十分な情報を回復するために使用することができ、他のアプローチと競合する推論を可能にする。
論文 参考訳(メタデータ) (2023-02-17T14:27:00Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - GIST: Distributed Training for Large-Scale Graph Convolutional Networks [18.964079367668262]
GISTはハイブリッド層とグラフサンプリング手法であり、グローバルモデルをいくつかの小さなサブGCNに分割する。
この分散フレームワークはモデルのパフォーマンスを改善し、ウォールクロックのトレーニング時間を大幅に短縮します。
GISTは、グラフ機械学習とディープラーニングの既存のギャップを埋めることを目的として、大規模なGCN実験を可能にすることを目指している。
論文 参考訳(メタデータ) (2021-02-20T19:25:38Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z) - Optimal Transport Graph Neural Networks [31.191844909335963]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、集約グラフ表現に平均または総和ノードを埋め込む。
本稿では,パラメトリックプロトタイプを用いたグラフ埋め込み計算モデルOT-GNNを紹介する。
論文 参考訳(メタデータ) (2020-06-08T14:57:39Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
グラフ畳み込みネットワーク(GCN)は、最先端のグラフベースの表現学習モデルである。
本稿では、GCNベースの協調フィルタリング(CF)ベースのレコメンダシステム(RS)について再検討する。
単純なグラフ畳み込みネットワークの理論と整合して,非線形性を取り除くことで推奨性能が向上することを示す。
本稿では,ユーザ・イテム相互作用モデリングを用いたCF用に特別に設計された残差ネットワーク構造を提案する。
論文 参考訳(メタデータ) (2020-01-28T04:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。