論文の概要: An Approach to Inference-Driven Dialogue Management within a Social
Chatbot
- arxiv url: http://arxiv.org/abs/2111.00570v1
- Date: Sun, 31 Oct 2021 19:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 13:22:25.103351
- Title: An Approach to Inference-Driven Dialogue Management within a Social
Chatbot
- Title(参考訳): ソーシャルチャットボットにおける推論駆動対話管理へのアプローチ
- Authors: Sarah E. Finch, James D. Finch, Daniil Huryn, William Hutsell,
Xiaoyuan Huang, Han He, Jinho D. Choi
- Abstract要約: 会話を一連の応答生成タスクとしてフレーミングする代わりに、会話を協調推論プロセスとしてモデル化する。
私たちのパイプラインは、このモデリングを3つの幅広い段階で達成します。
このアプローチは、ユーザ入力の潜在意味論、フレキシブルなイニシアティブの取り方、対話コンテキストに新しく一貫性のある応答を理解するのに役立ちます。
- 参考スコア(独自算出の注目度): 10.760026478889667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a chatbot implementing a novel dialogue management approach based
on logical inference. Instead of framing conversation a sequence of response
generation tasks, we model conversation as a collaborative inference process in
which speakers share information to synthesize new knowledge in real time. Our
chatbot pipeline accomplishes this modelling in three broad stages. The first
stage translates user utterances into a symbolic predicate representation. The
second stage then uses this structured representation in conjunction with a
larger knowledge base to synthesize new predicates using efficient graph
matching. In the third and final stage, our bot selects a small subset of
predicates and translates them into an English response. This approach lends
itself to understanding latent semantics of user inputs, flexible initiative
taking, and responses that are novel and coherent with the dialogue context.
- Abstract(参考訳): 本稿では,論理推論に基づく対話管理手法を実装したチャットボットを提案する。
会話を一連の応答生成タスクにフレーミングする代わりに、話者が情報を共有して新しい知識をリアルタイムで合成する協調的推論プロセスとして会話をモデル化する。
当社のチャットボットパイプラインは、このモデリングを3つの幅広いステージで実現します。
第1段階は、ユーザの発話を象徴的述語表現に変換する。
次に、この構造化表現をより大きな知識ベースと組み合わせて、効率的なグラフマッチングを用いて新しい述語を合成する。
第3段階と最終段階において、我々のボットは述語の小さなサブセットを選択し、それらを英語の応答に変換する。
このアプローチは、ユーザ入力の潜在的なセマンティクス、柔軟なイニシアティブの取り込み、対話コンテキストに新しく一貫性のある応答を理解するのに役立ちます。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation [55.043492250775294]
本稿では,新しい対面音声対話モデルを提案する。
ユーザ入力から音声視覚音声を処理し、応答として音声視覚音声を生成する。
また,最初の大規模マルチモーダル音声対話コーパスであるMultiDialogを紹介する。
論文 参考訳(メタデータ) (2024-06-12T04:48:36Z) - Token Trails: Navigating Contextual Depths in Conversational AI with ChatLLM [0.5743699972363359]
Token Trailsは、トークンタイプの埋め込みを利用して会話内のコンテキストニュアンスをナビゲートする、新しいアプローチである。
本フレームワークはトークン型埋め込みを利用して,ユーザの発話とボット応答を区別し,コンテキスト認識応答の生成を容易にする。
論文 参考訳(メタデータ) (2024-04-03T02:11:39Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
本稿では,対話談話特性を最大限に活用し,対話の絡み合いを高めることを提案する。
我々は,会話の意味的文脈をより良くモデル化するために,リッチな構造的特徴を統合する構造認識フレームワークを開発した。
我々の研究は、より広範なマルチスレッド対話アプリケーションを促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-06T19:17:47Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T08:14:16Z) - Contextual Dynamic Prompting for Response Generation in Task-oriented
Dialog Systems [8.419582942080927]
応答生成はタスク指向対話システムにおいて重要なコンポーネントの1つである。
本稿では,対話コンテキストからプロンプトを学習するテキスト動的プロンプトを実現する手法を提案する。
文脈的動的プロンプトは,3つの絶対点で構造化されたテキスト合成スコア citemehri-etal 2019 を用いて応答生成を改善することを示す。
論文 参考訳(メタデータ) (2023-01-30T20:26:02Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - Improving a sequence-to-sequence nlp model using a reinforcement
learning policy algorithm [0.0]
対話生成の現在のニューラルネットワークモデルは、おしゃべりエージェントの回答を生成する上で非常に有望である。
しかし、彼らは発話を1度ずつ予測し、将来の結果に対する彼らの影響を無視している。
本研究は,対話の長期的成功に基づくニューラルな会話モデル構築に向けた予備的なステップを記念するものである。
論文 参考訳(メタデータ) (2022-12-28T22:46:57Z) - Spoken Style Learning with Multi-modal Hierarchical Context Encoding for
Conversational Text-to-Speech Synthesis [59.27994987902646]
歴史的会話から話し言葉のスタイルを学習する研究は、まだ初期段階にある。
歴史的会話の書き起こしのみが考慮され、歴史的スピーチの話し方を無視している。
マルチモーダル階層型コンテキスト符号化を用いた音声スタイル学習手法を提案する。
論文 参考訳(メタデータ) (2021-06-11T08:33:52Z) - Building A User-Centric and Content-Driven Socialbot [2.072266782237039]
我々は,ソーシャルボット会話用に設計した対話戦略を収容できるシステムアーキテクチャを開発した。
このアーキテクチャは、ユーザ発話を分析するための多次元言語理解モジュールで構成されている。
様々な情報源からソーシャルチャットコンテンツを収集し,ソーシャルボットを支える新しい知識基盤を構築した。
論文 参考訳(メタデータ) (2020-05-06T07:11:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。