論文の概要: Constrained Dominant sets and Its applications in computer vision
- arxiv url: http://arxiv.org/abs/2002.06028v1
- Date: Wed, 12 Feb 2020 20:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 20:12:52.699973
- Title: Constrained Dominant sets and Its applications in computer vision
- Title(参考訳): 制約付き支配集合とそのコンピュータビジョンへの応用
- Authors: Alemu Leulseged Tesfaye
- Abstract要約: 本稿では,制約付きクラスタリング手法を用いて,複数のコンピュータビジョンタスクを解く手法を提案する。
我々は、よく知られたグラフとゲーム理論のクラスタリング手法であるDominant Setsの拡張、再構成、統合に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this thesis, we present new schemes which leverage a constrained
clustering method to solve several computer vision tasks ranging from image
retrieval, image segmentation and co-segmentation, to person re-identification.
In the last decades clustering methods have played a vital role in computer
vision applications; herein, we focus on the extension, reformulation, and
integration of a well-known graph and game theoretic clustering method known as
Dominant Sets. Thus, we have demonstrated the validity of the proposed methods
with extensive experiments which are conducted on several benchmark datasets.
- Abstract(参考訳): 本稿では,画像検索,画像分割,コセグメンテーション,人物の再識別など,複数のコンピュータビジョンタスクを解決するために,制約付きクラスタリング手法を利用する新しい手法を提案する。
過去数十年間,コンピュータビジョンアプリケーションではクラスタリング手法が重要な役割を担ってきた。ここでは,よく知られたグラフとゲーム理論的なクラスタリング手法の拡張,再構成,統合に注目する。
そこで本研究では,提案手法の有効性を検証し,いくつかのベンチマークデータセットを用いて実験を行った。
関連論文リスト
- Masked Image Modeling: A Survey [73.21154550957898]
マスク付き画像モデリングは、コンピュータビジョンにおける強力な自己教師付き学習技術として登場した。
我々は近年,分類学を構築し,最も顕著な論文をレビューしている。
我々は,最も人気のあるデータセット上で,様々なマスク付き画像モデリング手法の性能評価結果を集約する。
論文 参考訳(メタデータ) (2024-08-13T07:27:02Z) - UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
この研究は、教師なし医療画像とコンピュータビジョンの幅広い分野に貢献する。
これは、現実世界の課題に沿うイメージセグメンテーションのための革新的な方法論である。
提案手法は,医用画像,リモートセンシング,物体認識など,多様な応用の可能性を秘めている。
論文 参考訳(メタデータ) (2024-05-09T19:02:00Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
本稿では,地域コントラスト(LRC)を統合した新しいコントラスト学習フレームワークを提案する。
提案手法では,Felzenszwalbのアルゴリズムによるスーパーピクセルの同定と,新しいコントラッシブサンプリング損失を用いた局所コントラスト学習を行う。
論文 参考訳(メタデータ) (2023-04-06T22:43:13Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
本稿では,Dual Information enhanced Multi-view Attributed Graph Clustering (DIAGC)法を提案する。
提案手法では,複数の視点からのコンセンサスと特定情報の探索を阻害する特定情報再構成(SIR)モジュールを提案する。
相互情報最大化(MIM)モジュールは、潜在高レベル表現と低レベル表現との合意を最大化し、高レベル表現が所望のクラスタリング構造を満たすことを可能にする。
論文 参考訳(メタデータ) (2022-11-28T01:18:04Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
クラスタリングは、文献で広く研究されている基本的な機械学習タスクである。
ディープクラスタリング(Deep Clustering)、すなわち表現学習とクラスタリングを共同で最適化する手法が提案され、コミュニティで注目を集めている。
深層クラスタリングの本質的なコンポーネントを要約し、深層クラスタリングと深層クラスタリングの相互作用を設計する方法によって既存の手法を分類する。
論文 参考訳(メタデータ) (2022-06-15T15:05:13Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。