Bayesian Learning of Causal Relationships for System Reliability
- URL: http://arxiv.org/abs/2002.06084v1
- Date: Fri, 14 Feb 2020 15:40:10 GMT
- Title: Bayesian Learning of Causal Relationships for System Reliability
- Authors: Xuewen Yu, Jim Q. Smith and Linda Nichols
- Abstract summary: We show how some aspects of established causal methodology can be translated via trees.
We show how various domain specific concepts of causality particular to reliability can be imported into more generic causal algebras.
This paper is informed by a detailed analysis of maintenance records associated with a large electrical distribution company.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal theory is now widely developed with many applications to medicine and
public health. However within the discipline of reliability, although causation
is a key concept in this field, there has been much less theoretical attention.
In this paper, we will demonstrate how some aspects of established causal
methodology can be translated via trees, and more specifically chain event
graphs, into domain of reliability theory to help the probability modeling of
failures. We further show how various domain specific concepts of causality
particular to reliability can be imported into more generic causal algebras and
so demonstrate how these disciplines can inform each other. This paper is
informed by a detailed analysis of maintenance records associated with a large
electrical distribution company. Causal hypotheses embedded within these
natural language texts are extracted and analyzed using the new graphical
framework we introduced here.
Related papers
- CausalLP: Learning causal relations with weighted knowledge graph link prediction [5.3454230926797734]
CausalLP formulates the issue of incomplete causal networks as a knowledge graph completion problem.
The use of knowledge graphs to represent causal relations enables the integration of external domain knowledge.
Two primary tasks are supported by CausalLP: causal explanation and causal prediction.
arXiv Detail & Related papers (2024-04-23T20:50:06Z) - Bayesian Networks for Causal Analysis in Socioecological Systems [0.3495246564946556]
Causal and counterfactual reasoning are emerging directions in data science.
Main contribution of this paper is to analyze the relations of necessity and sufficiency between the variables of a socioecological system.
In particular, we consider a case study involving socioeconomic factors and land-uses in southern Spain.
arXiv Detail & Related papers (2024-01-18T16:10:07Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [55.66353783572259]
Causal-Consistency Chain-of-Thought harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models.
Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations.
arXiv Detail & Related papers (2023-08-23T04:59:21Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - A Survey on Causal Discovery: Theory and Practice [2.741266294612776]
Causal inference is designed to quantify the underlying relationships that connect a cause to its effect.
In this paper, we explore recent advancements in a unified manner, provide a consistent overview of existing algorithms, report useful tools and data, present real-world applications.
arXiv Detail & Related papers (2023-05-17T08:18:56Z) - Towards Causal Analysis of Empirical Software Engineering Data: The
Impact of Programming Languages on Coding Competitions [10.51554436183424]
This paper discusses some novel techniques based on structural causal models.
We apply these ideas to analyzing public data about programmer performance in Code Jam.
We find considerable differences between a purely associational and a causal analysis of the very same data.
arXiv Detail & Related papers (2023-01-18T13:46:16Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
This paper aims to estimate and mitigate the bad effect of textual modality for strong OOD generalization.
Inspired by this, we devise a model-agnostic counterfactual framework for multimodal sentiment analysis.
arXiv Detail & Related papers (2022-07-24T03:57:40Z) - Causality, Causal Discovery, and Causal Inference in Structural
Engineering [1.827510863075184]
This paper builds a case for causal discovery and causal inference from a civil and structural engineering perspective.
More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference.
arXiv Detail & Related papers (2022-04-04T14:49:47Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.