Superpixel Segmentation with Fully Convolutional Networks
- URL: http://arxiv.org/abs/2003.12929v1
- Date: Sun, 29 Mar 2020 02:42:07 GMT
- Title: Superpixel Segmentation with Fully Convolutional Networks
- Authors: Fengting Yang, Qian Sun, Hailin Jin, Zihan Zhou
- Abstract summary: We present a novel method that employs a simple fully convolutional network to predict superpixels on a regular image grid.
Experimental results on benchmark datasets show that our method achieves state-of-the-art superpixel segmentation performance.
We modify a popular network architecture for stereo matching to simultaneously predict superpixels and disparities.
- Score: 32.878045921919714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In computer vision, superpixels have been widely used as an effective way to
reduce the number of image primitives for subsequent processing. But only a few
attempts have been made to incorporate them into deep neural networks. One main
reason is that the standard convolution operation is defined on regular grids
and becomes inefficient when applied to superpixels. Inspired by an
initialization strategy commonly adopted by traditional superpixel algorithms,
we present a novel method that employs a simple fully convolutional network to
predict superpixels on a regular image grid. Experimental results on benchmark
datasets show that our method achieves state-of-the-art superpixel segmentation
performance while running at about 50fps. Based on the predicted superpixels,
we further develop a downsampling/upsampling scheme for deep networks with the
goal of generating high-resolution outputs for dense prediction tasks.
Specifically, we modify a popular network architecture for stereo matching to
simultaneously predict superpixels and disparities. We show that improved
disparity estimation accuracy can be obtained on public datasets.
Related papers
- Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
We propose a solution by leveraging the idea of superpixels, an over-segmentation of the image, and applying them with a modern transformer framework.
Our method achieves state-of-the-art performance in semantic segmentation due to the rich superpixel features generated by the global self-attention mechanism.
arXiv Detail & Related papers (2023-09-28T23:09:30Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) has several applications in image analysis.
Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors.
We introduce a post-processing method, named textitSaliency Enhancement over Superpixel Similarity (SESS)
We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.
arXiv Detail & Related papers (2021-12-01T17:22:54Z) - SIN:Superpixel Interpolation Network [9.046310874823002]
Traditional algorithms and deep learning-based algorithms are two main streams in superpixel segmentation.
In this paper, we propose a deep learning-based superpixel segmentation algorithm SIN which can be integrated with downstream tasks in an end-to-end way.
arXiv Detail & Related papers (2021-10-17T02:21:11Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
We present a method to segment MRI scans of the human brain into ischemic stroke lesion and normal tissues.
We propose a neural network architecture in the form of a standard encoder-decoder where predictions are guided by a spatial expansion embedding network.
arXiv Detail & Related papers (2021-09-18T00:21:17Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) is designed to efficiently and accurately implement high-resolution superpixel segmentation.
DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
arXiv Detail & Related papers (2021-08-19T10:33:05Z) - HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate
Segmentation [0.0]
We propose a two-stage graph-based framework for superpixel segmentation.
In the first stage, we introduce an efficient Deep Affinity Learning network that learns pairwise pixel affinities.
In the second stage, we propose a highly efficient superpixel method called Hierarchical Entropy Rate (HERS)
arXiv Detail & Related papers (2021-06-07T16:20:04Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
We propose a way to implicitly integrate a superpixel scheme into CNNs.
Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels.
We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z) - Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization [11.696069523681178]
We propose an unsupervised superpixel segmentation method by optimizing a randomly-d convolutional neural network (CNN) in inference time.
Our method generates superpixels via CNN from a single image without any labels by minimizing a proposed objective function for superpixel segmentation in inference time.
arXiv Detail & Related papers (2020-02-17T04:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.