論文の概要: Hierarchical Model Selection for Graph Neural Netoworks
- arxiv url: http://arxiv.org/abs/2212.00898v1
- Date: Thu, 1 Dec 2022 22:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 17:17:00.483669
- Title: Hierarchical Model Selection for Graph Neural Netoworks
- Title(参考訳): グラフニューラルネットワークのための階層モデル選択
- Authors: Yuga Oishi, Ken Kaneiwa
- Abstract要約: 本稿では,各グラフデータの指標を分析して,適切なグラフニューラルネットワーク(GNN)モデルを選択する階層モデル選択フレームワークを提案する。
実験では,HMSFが選択したモデルにより,様々なグラフデータに対するノード分類の性能が向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Node classification on graph data is a major problem, and various graph
neural networks (GNNs) have been proposed. Variants of GNNs such as H2GCN and
CPF outperform graph convolutional networks (GCNs) by improving on the
weaknesses of the traditional GNN. However, there are some graph data which
these GNN variants fail to perform well than other GNNs in the node
classification task. This is because H2GCN has a feature thinning on graph data
with high average degree, and CPF gives rise to a problem about
label-propagation suitability. Accordingly, we propose a hierarchical model
selection framework (HMSF) that selects an appropriate GNN model by analyzing
the indicators of each graph data. In the experiment, we show that the model
selected by our HMSF achieves high performance on node classification for
various types of graph data.
- Abstract(参考訳): グラフデータのノード分類は大きな問題であり、様々なグラフニューラルネットワーク(GNN)が提案されている。
H2GCNやCPFのようなGNNの多様性は、従来のGNNの弱点を改善することにより、GCNよりも優れている。
しかし、これらのGNN変種がノード分類タスクの他のGNNよりもうまく機能しないグラフデータもある。
これは、H2GCNがグラフデータに高い平均度で機能を薄めているためであり、CPFはラベルプロパゲーション適合性の問題を引き起こす。
そこで我々は,各グラフデータの指標を分析し,適切なGNNモデルを選択する階層モデル選択フレームワーク(HMSF)を提案する。
実験では,我々のhmsfで選択したモデルが,各種グラフデータのノード分類において高い性能を実現することを示す。
関連論文リスト
- GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification [1.857645719601748]
グラフニューラルネットワーク(GNN)は、グラフデータの表現を学習するための強力なモデルとして登場した。
我々は,最も表現力の高いGNNでさえ,ノード属性や明示的なラベル情報を入力として使用せずに学習できないことを示す。
本稿では,ノードの機能,ラベル,位置情報を統合したGNN-MultiFixという簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-21T12:59:39Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。