論文の概要: Hierarchical Correlation Clustering and Tree Preserving Embedding
- arxiv url: http://arxiv.org/abs/2002.07756v3
- Date: Wed, 12 Jun 2024 15:43:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-16 18:08:02.238692
- Title: Hierarchical Correlation Clustering and Tree Preserving Embedding
- Title(参考訳): 階層的相関クラスタリングと木保存埋め込み
- Authors: Morteza Haghir Chehreghani, Mostafa Haghir Chehreghani,
- Abstract要約: 本稿では,よく知られた相関クラスタリングを拡張する階層的相関クラスタリング手法を提案する。
本稿では,このような階層的相関クラスタリングを用いた教師なし表現学習について検討する。
- 参考スコア(独自算出の注目度): 3.821323038670061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hierarchical correlation clustering method that extends the well-known correlation clustering to produce hierarchical clusters applicable to both positive and negative pairwise dissimilarities. Then, in the following, we study unsupervised representation learning with such hierarchical correlation clustering. For this purpose, we first investigate embedding the respective hierarchy to be used for tree preserving embedding and feature extraction. Thereafter, we study the extension of minimax distance measures to correlation clustering, as another representation learning paradigm. Finally, we demonstrate the performance of our methods on several datasets.
- Abstract(参考訳): 本稿では,よく知られた相関クラスタリングを拡張した階層的相関クラスタリング手法を提案する。
次に,このような階層的相関クラスタリングを用いた教師なし表現学習について検討する。
そこで本研究ではまず,木組み保存や特徴抽出に使用する各階層の埋め込みについて検討する。
その後、別の表現学習パラダイムとして、相関クラスタリングへのミニマックス距離測定の拡張について検討する。
最後に,提案手法の性能をいくつかのデータセットで示す。
関連論文リスト
- Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - Natural Hierarchical Cluster Analysis by Nearest Neighbors with
Near-Linear Time Complexity [0.0]
そこで本研究では,クラスタの自然な階層化を実現する,近接クラスタリングアルゴリズムを提案する。
集約的および分割的階層的クラスタリングアルゴリズムとは対照的に,我々のアプローチはアルゴリズムの反復的な動作に依存しない。
論文 参考訳(メタデータ) (2022-03-15T16:03:42Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
部分的マルチビュークラスタリングの問題を解決するために,拡張自由グラフコントラスト学習フレームワークを提案する。
提案手法は、インスタンスレベルのコントラスト学習と欠落データ推論をクラスタレベルに高め、個々の欠落データがクラスタリングに与える影響を効果的に軽減する。
論文 参考訳(メタデータ) (2022-03-01T02:32:25Z) - Path Based Hierarchical Clustering on Knowledge Graphs [1.713291434132985]
対象クラスタの階層化を誘導する新しい手法を提案する。
この階層上のクラスタに対象を割り当てる前に、まずタグ階層を構築します。
実世界の3つのデータセット上で,コヒーレントクラスタ階層を誘導する手法の能力を定量的に示す。
論文 参考訳(メタデータ) (2021-09-27T16:42:43Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Unsupervised Embedding of Hierarchical Structure in Euclidean Space [30.507049058838025]
我々は、集約アルゴリズムによって生成される階層的クラスタリングを改善する方法として、ユークリッド空間にデータの非線形埋め込みを学習することを検討する。
遅延空間埋め込みの再スケーリングはデンドログラムの純度とモーゼリー・ワングのコスト関数の改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-30T03:57:09Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Interactive Steering of Hierarchical Clustering [30.371250297444703]
本稿では,公開知識(ウィキペディアなど)とユーザからのプライベート知識の両方を活用することで,制約付き階層的クラスタリングを視覚的に監視するインタラクティブなステアリング手法を提案する。
1)知識(知識駆動)と本質的なデータ分散(データ駆動)を用いて階層的クラスタリングの制約を自動的に構築する。
階層的クラスタリングの結果を明確に伝達するために,不確実性を考慮したツリー可視化が開発され,最も不確実なサブ階層を素早く見つけることができる。
論文 参考訳(メタデータ) (2020-09-21T05:26:07Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。