Inductive Representation Learning on Temporal Graphs
- URL: http://arxiv.org/abs/2002.07962v1
- Date: Wed, 19 Feb 2020 02:05:37 GMT
- Title: Inductive Representation Learning on Temporal Graphs
- Authors: Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan
- Abstract summary: temporal dynamic graphs require handling new nodes as well as capturing temporal patterns.
We propose the temporal graph attention layer to efficiently aggregate temporal-topological neighborhood features.
By stacking TGAT layers, the network recognizes the node embeddings as functions of time and is able to inductively infer embeddings for both new and observed nodes.
- Score: 33.44276155380476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inductive representation learning on temporal graphs is an important step
toward salable machine learning on real-world dynamic networks. The evolving
nature of temporal dynamic graphs requires handling new nodes as well as
capturing temporal patterns. The node embeddings, which are now functions of
time, should represent both the static node features and the evolving
topological structures. Moreover, node and topological features can be temporal
as well, whose patterns the node embeddings should also capture. We propose the
temporal graph attention (TGAT) layer to efficiently aggregate
temporal-topological neighborhood features as well as to learn the time-feature
interactions. For TGAT, we use the self-attention mechanism as building block
and develop a novel functional time encoding technique based on the classical
Bochner's theorem from harmonic analysis. By stacking TGAT layers, the network
recognizes the node embeddings as functions of time and is able to inductively
infer embeddings for both new and observed nodes as the graph evolves. The
proposed approach handles both node classification and link prediction task,
and can be naturally extended to include the temporal edge features. We
evaluate our method with transductive and inductive tasks under temporal
settings with two benchmark and one industrial dataset. Our TGAT model compares
favorably to state-of-the-art baselines as well as the previous temporal graph
embedding approaches.
Related papers
- Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs [0.6562256987706128]
HYPA-DBGNN is a novel two-step approach that combines the inference of anomalous sequential patterns in time series data on graphs.
Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs.
Our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies.
arXiv Detail & Related papers (2024-06-24T11:41:12Z) - CTRL: Continuous-Time Representation Learning on Temporal Heterogeneous Information Network [32.42051167404171]
We propose a Continuous-Time Representation Learning model on temporal HINs.
We train the model with a future event (a subgraph) prediction task to capture the evolution of the high-order network structure.
The results demonstrate that our model significantly boosts performance and outperforms various state-of-the-art approaches.
arXiv Detail & Related papers (2024-05-11T03:39:22Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
Temporal graph learning aims to generate high-quality representations for graph-based tasks with dynamic information.
We propose a self-supervised method called S2T for temporal graph learning, which extracts both temporal and structural information.
S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.
arXiv Detail & Related papers (2023-02-15T06:36:04Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
arXiv Detail & Related papers (2022-02-25T10:02:49Z) - Self-Supervised Dynamic Graph Representation Learning via Temporal
Subgraph Contrast [0.8379286663107846]
This paper proposes a self-supervised dynamic graph representation learning framework (DySubC)
DySubC defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph.
Experiments on five real-world datasets demonstrate that DySubC performs better than the related baselines.
arXiv Detail & Related papers (2021-12-16T09:35:34Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative
Models [9.75258136573147]
We propose a new model, called Temporal Graph Generative Adversarial Network'' (TG-GAN) for continuous-time temporal graph generation.
We first propose a novel temporal graph generator that jointly model truncated edge sequences, time budgets, and node attributes.
In addition, a new temporal graph discriminator is proposed, which combines time and node encoding operations over a recurrent architecture to distinguish the generated sequences.
arXiv Detail & Related papers (2020-05-17T17:59:12Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.