論文の概要: Being Bayesian about Categorical Probability
- arxiv url: http://arxiv.org/abs/2002.07965v2
- Date: Mon, 29 Jun 2020 13:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 12:58:22.077907
- Title: Being Bayesian about Categorical Probability
- Title(参考訳): カテゴリーの確率についてベイジアンであるさま
- Authors: Taejong Joo, Uijung Chung, Min-Gwan Seo
- Abstract要約: クラスラベルに対する分類的確率の確率変数を考える。
この枠組みでは、先行分布は観測されたラベルに固有の推定ノイズを明示的にモデル化する。
本手法は,計算オーバーヘッドが無視できるプラグアンドプレイ損失関数として実装することができる。
- 参考スコア(独自算出の注目度): 6.875312133832079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks utilize the softmax as a building block in classification
tasks, which contains an overconfidence problem and lacks an uncertainty
representation ability. As a Bayesian alternative to the softmax, we consider a
random variable of a categorical probability over class labels. In this
framework, the prior distribution explicitly models the presumed noise inherent
in the observed label, which provides consistent gains in generalization
performance in multiple challenging tasks. The proposed method inherits
advantages of Bayesian approaches that achieve better uncertainty estimation
and model calibration. Our method can be implemented as a plug-and-play loss
function with negligible computational overhead compared to the softmax with
the cross-entropy loss function.
- Abstract(参考訳): ニューラルネットワークは、不確実性表現能力に欠ける過信問題を含む分類タスクにおいて、ソフトマックスをビルディングブロックとして利用する。
ソフトマックスのベイズ的代替として、クラスラベル上のカテゴリー的確率のランダム変数を考える。
この枠組みでは、事前分布は観測ラベルに内在する推定ノイズを明示的にモデル化し、複数の課題タスクにおける一般化性能の一貫性をもたらす。
提案手法は,不確実性推定とモデルキャリブレーションを改善するベイズアプローチの利点を継承する。
クロスエントロピー損失関数を持つソフトマックスと比較して計算オーバーヘッドが無視できるプラグ・アンド・プレイ損失関数として実装できる。
関連論文リスト
- Dirichlet-Based Prediction Calibration for Learning with Noisy Labels [40.78497779769083]
雑音ラベルによる学習はディープニューラルネットワーク(DNN)の一般化性能を著しく損なう
既存のアプローチでは、損失補正やサンプル選択手法によってこの問題に対処している。
そこで我々は,textitDirichlet-based Prediction (DPC) 法を解法として提案する。
論文 参考訳(メタデータ) (2024-01-13T12:33:04Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確に,分布自由で,漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
構築された信頼領域は強い整合性、すなわち、任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
論文 参考訳(メタデータ) (2023-08-03T15:52:27Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Robustness Guarantees for Credal Bayesian Networks via Constraint
Relaxation over Probabilistic Circuits [16.997060715857987]
本研究では,決定関数のロバスト性を,断続ベイズ的ネットワークに対して定量化する手法を開発した。
回路サイズにおいて線形時間で MARmax 上の保証上限を得る方法を示す。
論文 参考訳(メタデータ) (2022-05-11T22:37:07Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - The Devil is in the Margin: Margin-based Label Smoothing for Network
Calibration [21.63888208442176]
ディープニューラルネットワークの優位な性能にもかかわらず、最近の研究では、それらが十分に校正されていないことが示されている。
現状のキャリブレーション損失に対する統一的制約最適化の視点を提供する。
我々は不等式制約に基づく単純で柔軟な一般化を提案し、ロジット距離に制御可能なマージンを課す。
論文 参考訳(メタデータ) (2021-11-30T14:21:47Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
視覚分類のためのディープニューラルネットワークのためのガウス混合損失関数(GM)を提案する。
分類マージンと可能性正規化により、GM損失は高い分類性能と特徴分布の正確なモデリングの両方を促進する。
提案したモデルは、追加のトレーニング可能なパラメータを使わずに、簡単かつ効率的に実装できる。
論文 参考訳(メタデータ) (2020-11-18T03:32:27Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。