Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and
Control into Deep Learning
- URL: http://arxiv.org/abs/2002.08860v3
- Date: Thu, 30 Apr 2020 02:53:24 GMT
- Title: Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and
Control into Deep Learning
- Authors: Yaofeng Desmond Zhong, Biswadip Dey, Amit Chakraborty
- Abstract summary: We introduce Dissipative SymODEN, a deep learning architecture which can infer the dynamics of a physical system with dissipation from observed state trajectories.
Dissipative SymODEN encodes the port-Hamiltonian dynamics with energy dissipation and external input into the design of its graph and learns the dynamics in a structured way.
- Score: 9.811643357656196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce Dissipative SymODEN, a deep learning architecture
which can infer the dynamics of a physical system with dissipation from
observed state trajectories. To improve prediction accuracy while reducing
network size, Dissipative SymODEN encodes the port-Hamiltonian dynamics with
energy dissipation and external input into the design of its computation graph
and learns the dynamics in a structured way. The learned model, by revealing
key aspects of the system, such as the inertia, dissipation, and potential
energy, paves the way for energy-based controllers.
Related papers
- Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation [55.227976642410766]
dynamics of information diffusion within graphs is a critical open issue that heavily influences graph representation learning.
Motivated by this, we introduce (port-)Hamiltonian Deep Graph Networks.
We reconcile under a single theoretical and practical framework both non-dissipative long-range propagation and non-conservative behaviors.
arXiv Detail & Related papers (2024-05-27T13:36:50Z) - Characterizing the load profile in power grids by Koopman mode
decomposition of interconnected dynamics [0.6629765271909505]
This paper presents an interpretable machine learning approach that identifies load dynamics using data-driven methods.
We represent the load data using the Koopman operator, which is inherent to underlying dynamics.
We evaluate our approach using a large-scale dataset from a renewable electric power system within the continental European electricity system.
arXiv Detail & Related papers (2023-04-16T16:56:52Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Learning dynamical systems: an example from open quantum system dynamics [0.0]
We will study the dynamics of a small spin chain coupled with dephasing gates.
We show how Koopman operator learning is an approach to efficiently learn not only the evolution of the density matrix, but also of every physical observable associated to the system.
arXiv Detail & Related papers (2022-11-12T14:36:13Z) - Unravelling the Performance of Physics-informed Graph Neural Networks
for Dynamical Systems [5.787429262238507]
We evaluate the performance of graph neural networks (GNNs) and their variants with explicit constraints and different architectures.
Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance.
All the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
arXiv Detail & Related papers (2022-11-10T12:29:30Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Unsupervised Learning of Lagrangian Dynamics from Images for Prediction
and Control [12.691047660244335]
We introduce a new unsupervised neural network model that learns Lagrangian dynamics from images.
The model infers Lagrangian dynamics on generalized coordinates that are simultaneously learned with a coordinate-aware variational autoencoder.
arXiv Detail & Related papers (2020-07-03T20:06:43Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
We introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system.
In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way.
This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.
arXiv Detail & Related papers (2019-09-26T13:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.