論文の概要: A Model-Based, Decision-Theoretic Perspective on Automated Cyber
Response
- arxiv url: http://arxiv.org/abs/2002.08957v1
- Date: Thu, 20 Feb 2020 15:30:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 07:44:15.028865
- Title: A Model-Based, Decision-Theoretic Perspective on Automated Cyber
Response
- Title(参考訳): 自動サイバー応答に関するモデルに基づく意思決定論的視点
- Authors: Lashon B. Booker and Scott A. Musman
- Abstract要約: 本稿では,これらの線に沿って設計された自動サイバー応答に対するアプローチについて述べる。
我々は,保護対象システムのシミュレーションをオンラインプランナーと組み合わせて,部分的に観察可能なマルコフ決定問題(POMDP)を特徴とするサイバー防御問題を解く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber-attacks can occur at machine speeds that are far too fast for
human-in-the-loop (or sometimes on-the-loop) decision making to be a viable
option. Although human inputs are still important, a defensive Artificial
Intelligence (AI) system must have considerable autonomy in these
circumstances. When the AI system is model-based, its behavior responses can be
aligned with risk-aware cost/benefit tradeoffs that are defined by
user-supplied preferences that capture the key aspects of how human operators
understand the system, the adversary and the mission. This paper describes an
approach to automated cyber response that is designed along these lines. We
combine a simulation of the system to be defended with an anytime online
planner to solve cyber defense problems characterized as partially observable
Markov decision problems (POMDPs).
- Abstract(参考訳): サイバー攻撃は、人間がループ内(またはループ上)で決定を下すにはあまりにも高速であるマシンスピードで起こりうる。
人間の入力は依然として重要であるが、防衛人工知能(AI)システムはこれらの状況においてかなりの自律性を持つ必要がある。
AIシステムがモデルベースである場合、その行動応答は、システムや敵、ミッションを理解する上で重要な側面を捉えた、ユーザが提供する好みによって定義されるリスク対応コスト/利益トレードオフに一致させることができる。
本稿では,これらに沿って設計された自動サイバー応答手法について述べる。
我々は,防衛対象のシステムをオンラインプランナーと組み合わせて,部分的に観測可能なマルコフ決定問題(POMDP)を特徴とするサイバー防御問題を解く。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - REACT: Autonomous Intrusion Response System for Intelligent Vehicles [1.5862483908050367]
本稿では,車両内に組み込まれた動的侵入応答システムを提案する。
システムには、潜在的な応答の包括的なリスト、応答評価のための方法論、および様々な応答選択方法が提供されている。
この評価は、システムの適応性、迅速な応答能力、メモリフットプリントの最小化、動的システムのパラメータ調整の能力を強調している。
論文 参考訳(メタデータ) (2024-01-09T19:34:59Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
製造システムと自律ロボットの研究において、機械で解釈可能なシステム機能の仕様に「能力」という用語が用いられる。
セマンティック能力モデルから始めて、AI計画問題を自動的に生成するアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-14T10:37:34Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
人間のコントロールから独立すると、このようなシステムのサイバーセキュリティはさらに重要になる。
人間のコントロールから独立すると、このようなシステムのサイバーセキュリティはさらに重要になる。
本稿では,技術の現状を徹底的に議論し,新たなセキュリティ課題を特定し,研究の方向性を提案する。
論文 参考訳(メタデータ) (2023-11-05T09:17:39Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward [0.0]
この章は、自動運転車の複雑な領域を探求し、その基本的な構成要素と運用上の特性を分析します。
この調査の主な焦点は、サイバーセキュリティの領域、特に自動運転車の文脈にある。
これらの車両を潜在的な脅威から保護することを目的とした様々なリスク管理ソリューションについて、包括的な分析を行う。
論文 参考訳(メタデータ) (2023-09-25T15:19:09Z) - Automated Cyber Defence: A Review [0.0]
Automated Cyber Defense内の研究は、シーケンシャルな意思決定エージェントを通じて、ネットワークされたシステムを自律的に防御することで、インテリジェンス対応の開発と実現を可能にする。
本稿では,ACO(Autonomous Cyber Operation)とACO(Autonomous Cyber Operation)の2つのサブ領域に分割して,自動サイバー防衛の展開を包括的に詳述する。
この要件分析は、ACO Gymsを、現実のネットワークシステムに自動エージェントをデプロイするための総合的な目標として批判するためにも用いられる。
論文 参考訳(メタデータ) (2023-03-08T22:37:50Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems [16.609594839630883]
コンピュータビジョンのアプローチは、自律ロボットシステムによって意思決定の指針として広く使われている。
特に人間が監督的な役割しか果たさないHuman-on-the-loop(HoTL)システムでは、高精度が重要です。
適応的自律性レベルに基づくソリューションを提案し,これらのモデルの信頼性の低下を検出する。
論文 参考訳(メタデータ) (2021-03-28T05:43:10Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。