A Model-Based, Decision-Theoretic Perspective on Automated Cyber
Response
- URL: http://arxiv.org/abs/2002.08957v1
- Date: Thu, 20 Feb 2020 15:30:59 GMT
- Title: A Model-Based, Decision-Theoretic Perspective on Automated Cyber
Response
- Authors: Lashon B. Booker and Scott A. Musman
- Abstract summary: This paper describes an approach to automated cyber response that is designed along these lines.
We combine a simulation of the system to be defended with an anytime online planner to solve cyber defense problems characterized as partially observable Markov decision problems (POMDPs)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber-attacks can occur at machine speeds that are far too fast for
human-in-the-loop (or sometimes on-the-loop) decision making to be a viable
option. Although human inputs are still important, a defensive Artificial
Intelligence (AI) system must have considerable autonomy in these
circumstances. When the AI system is model-based, its behavior responses can be
aligned with risk-aware cost/benefit tradeoffs that are defined by
user-supplied preferences that capture the key aspects of how human operators
understand the system, the adversary and the mission. This paper describes an
approach to automated cyber response that is designed along these lines. We
combine a simulation of the system to be defended with an anytime online
planner to solve cyber defense problems characterized as partially observable
Markov decision problems (POMDPs).
Related papers
- REACT: Autonomous Intrusion Response System for Intelligent Vehicles [1.5862483908050367]
This paper proposes a dynamic intrusion response system integrated within the vehicle.
The system offers a comprehensive list of potential responses, a methodology for response evaluation, and various response selection methods.
The evaluation highlights the system's adaptability, its ability to respond swiftly, its minimal memory footprint, and its capacity for dynamic system parameter adjustments.
arXiv Detail & Related papers (2024-01-09T19:34:59Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
With the independence from human control, cybersecurity of such systems becomes even more critical.
With the independence from human control, cybersecurity of such systems becomes even more critical.
This paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions.
arXiv Detail & Related papers (2023-11-05T09:17:39Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward [0.0]
This chapter explores the complex realm of autonomous cars, analyzing their fundamental components and operational characteristics.
The primary focus of this investigation lies in the realm of cybersecurity, specifically in the context of autonomous vehicles.
A comprehensive analysis will be conducted to explore various risk management solutions aimed at protecting these vehicles from potential threats.
arXiv Detail & Related papers (2023-09-25T15:19:09Z) - Automated Cyber Defence: A Review [0.0]
Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents.
This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms.
The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems.
arXiv Detail & Related papers (2023-03-08T22:37:50Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems [16.609594839630883]
Computer vision approaches are widely used by autonomous robotic systems to guide their decision making.
High accuracy is critical, particularly for Human-on-the-loop (HoTL) systems where humans play only a supervisory role.
We propose a solution based upon adaptive autonomy levels, whereby the system detects loss of reliability of these models.
arXiv Detail & Related papers (2021-03-28T05:43:10Z) - Learning High-Level Policies for Model Predictive Control [54.00297896763184]
Model Predictive Control (MPC) provides robust solutions to robot control tasks.
We propose a self-supervised learning algorithm for learning a neural network high-level policy.
We show that our approach can handle situations that are difficult for standard MPC.
arXiv Detail & Related papers (2020-07-20T17:12:34Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.