Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems
- URL: http://arxiv.org/abs/2103.15053v1
- Date: Sun, 28 Mar 2021 05:43:10 GMT
- Title: Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems
- Authors: Sophia Abraham, Zachariah Carmichael, Sreya Banerjee, Rosaura
VidalMata, Ankit Agrawal, Md Nafee Al Islam, Walter Scheirer, Jane
Cleland-Huang
- Abstract summary: Computer vision approaches are widely used by autonomous robotic systems to guide their decision making.
High accuracy is critical, particularly for Human-on-the-loop (HoTL) systems where humans play only a supervisory role.
We propose a solution based upon adaptive autonomy levels, whereby the system detects loss of reliability of these models.
- Score: 16.609594839630883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer vision approaches are widely used by autonomous robotic systems to
sense the world around them and to guide their decision making as they perform
diverse tasks such as collision avoidance, search and rescue, and object
manipulation. High accuracy is critical, particularly for Human-on-the-loop
(HoTL) systems where decisions are made autonomously by the system, and humans
play only a supervisory role. Failures of the vision model can lead to
erroneous decisions with potentially life or death consequences. In this paper,
we propose a solution based upon adaptive autonomy levels, whereby the system
detects loss of reliability of these models and responds by temporarily
lowering its own autonomy levels and increasing engagement of the human in the
decision-making process. Our solution is applicable for vision-based tasks in
which humans have time to react and provide guidance. When implemented, our
approach would estimate the reliability of the vision task by considering
uncertainty in its model, and by performing covariate analysis to determine
when the current operating environment is ill-matched to the model's training
data. We provide examples from DroneResponse, in which small Unmanned Aerial
Systems are deployed for Emergency Response missions, and show how the vision
model's reliability would be used in addition to confidence scores to drive and
specify the behavior and adaptation of the system's autonomy. This workshop
paper outlines our proposed approach and describes open challenges at the
intersection of Computer Vision and Software Engineering for the safe and
reliable deployment of vision models in the decision making of autonomous
systems.
Related papers
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
We propose a method for a collaborative system that remains safe by having a human making decisions.
Ardent enables efficient and effective decision-making by adapting to individual preferences for explanations.
arXiv Detail & Related papers (2023-11-13T16:00:16Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
With the independence from human control, cybersecurity of such systems becomes even more critical.
With the independence from human control, cybersecurity of such systems becomes even more critical.
This paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions.
arXiv Detail & Related papers (2023-11-05T09:17:39Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
Existing systems often require hand-engineered components for state estimation, planning, and control.
This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies.
arXiv Detail & Related papers (2022-10-26T19:03:17Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Symbiotic System Design for Safe and Resilient Autonomous Robotics in
Offshore Wind Farms [3.5409202655473724]
Barriers to Beyond Visual Line of Sight (BVLOS) robotics include operational safety compliance and resilience.
We propose a symbiotic system; reflecting the lifecycle learning and co-evolution with knowledge sharing for mutual gain of robotic platforms and remote human operators.
Our methodology enables the run-time verification of safety, reliability and resilience during autonomous missions.
arXiv Detail & Related papers (2021-01-23T11:58:16Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z) - Learning to Optimize Autonomy in Competence-Aware Systems [32.3596917475882]
We propose an introspective model of autonomy that is learned and updated online through experience.
We define a competence-aware system (CAS) that explicitly models its own proficiency at different levels of autonomy and the available human feedback.
We analyze the convergence properties of CAS and provide experimental results for robot delivery and autonomous driving domains.
arXiv Detail & Related papers (2020-03-17T14:31:45Z) - A Model-Based, Decision-Theoretic Perspective on Automated Cyber
Response [0.0]
This paper describes an approach to automated cyber response that is designed along these lines.
We combine a simulation of the system to be defended with an anytime online planner to solve cyber defense problems characterized as partially observable Markov decision problems (POMDPs)
arXiv Detail & Related papers (2020-02-20T15:30:59Z) - Modeling Perception Errors towards Robust Decision Making in Autonomous
Vehicles [11.503090828741191]
We propose a simulation-based methodology towards answering the question: is a perception subsystem sufficient for the decision making subsystem to make robust, safe decisions?
We show how to analyze the impact of different kinds of sensing and perception errors on the behavior of the autonomous system.
arXiv Detail & Related papers (2020-01-31T08:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.