論文の概要: Flexible Amorphous Superconducting Materials and Quantum Devices with
Unexpected Tunability
- arxiv url: http://arxiv.org/abs/2002.10297v2
- Date: Thu, 19 Mar 2020 13:02:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 05:17:56.980210
- Title: Flexible Amorphous Superconducting Materials and Quantum Devices with
Unexpected Tunability
- Title(参考訳): 可変アモルファス超電導材料と予測不可能な量子デバイス
- Authors: Mohammad Suleiman, Emanuele G. Dalla Torre and Yachin Ivry
- Abstract要約: 超伝導膜、ナノワイヤ、量子干渉デバイス(SQUID)は、可変磁場、電流、温度、フレキシブル条件下で製造された。
我々の研究は、新しい磁気デバイスと、局所的な調整性を備えた量子テクノロジープラットフォームへの道を開いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In superconductivity, electrons exhibit unique macroscopic collective quantum
behavior that is the key for many modern quantum technologies. This electron
behavior stems vastly from coupling to a correlated motion of atoms in the
material, as well as from synchronized directional movement that screens
external magnetic fields perfectly. Hence, the inter-atomic distance and
material geometry are expected to affect fundamental superconductive
characteristics. These parameters are tunable with strain, but strain
application is hindered by the rigidity of superconductors, which in turn
increases at device-relevant temperatures. Here, we present flexible, foldable
and transferable superconducting materials, and functional quantum
nanostructures by depositing superconductive amorphous-alloy films on a
flexible adhesive tape. Specifically, flexible superconducting films, nanowires
and quantum interference devices (SQUIDs) were fabricated and characterized
under variable magnetic-field, current, temperature and flexure conditions. The
SQUID interference periodicity, which represents a single flux quantum,
exhibits unexpected tunability with folding curvature. This tunability raises a
need for a relook at the fundamentals of superconductivity, mainly with respect
to effects of geometry, magnetic-field inhomogeneity and strain. Our work paves
the way for novel magnetic devices and quantum-technology platforms with local
tunability.
- Abstract(参考訳): 超伝導では、電子は現代の多くの量子技術の鍵となるユニークなマクロ的な集合量子挙動を示す。
この電子の挙動は、物質中の原子の相関運動への結合と、外部磁場を完全に遮蔽する同期された方向運動から大きく生じる。
したがって、原子間距離と物質幾何は基本的な超伝導特性に影響を与えることが期待される。
これらのパラメータはひずみで調整できるが、超伝導体の剛性によって歪の応用が妨げられ、デバイス関連温度で増加する。
ここでは、フレキシブルな接着テープ上に超伝導アモルファス合金膜を堆積させることにより、フレキシブルで折り畳み可能な超伝導材料と機能性量子ナノ構造を示す。
具体的には、フレキシブル超伝導膜、ナノワイヤおよび量子干渉デバイス(squid)を、磁場、電流、温度および曲げ条件で作製した。
単一のフラックス量子を表すSQUID干渉周期性は、折りたたみ曲率で予期せぬチューニング性を示す。
このチューナビリティは、主に幾何学、磁場不均一性、ひずみの影響について、超伝導の基礎を再検討する必要がある。
我々の研究は、新しい磁気デバイスと、局所的な調整性を備えた量子テクノロジープラットフォームへの道を開いた。
関連論文リスト
- Superfluid stiffness of twisted multilayer graphene superconductors [1.374933941124824]
マジック角度ツイスト三層グラフェン(TTG)における$rho_s$の測定について報告する。
線形温度依存性は低温での$rho_s$と電流バイアス依存性における非線形マイスナー効果である。
その結果, TTGの能動超伝導の強い証拠が得られ, グラフェン系超伝導体の機構に強い制約が課された。
論文 参考訳(メタデータ) (2024-06-19T18:00:04Z) - Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED [0.32018750515900324]
魔法の角をねじった二層グラフェン(MATBG)の超伝導は、ムーア系の研究に強い関心を持つトピックである。
我々は、MATBGの超流動剛性を直接測定するために、直流輸送およびマイクロ波回路量子力学を用いる。
以上の結果から,MATBGは異方性ギャップを有する常温超伝導体であり,量子幾何学,超流動剛性,非常温超伝導とのつながりが強く示唆された。
論文 参考訳(メタデータ) (2024-06-19T18:00:02Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
我々は、細い極性ファンデルワールス結晶からなる空洞に閉じ込められたモワール物質の理論を発展させた。
モワール平らなバンドの非自明な量子幾何学は、電子の電磁真空ドレッシングにつながる。
その結果, キャビティ閉じ込めにより, モワール材料の磁気フラストレーションを制御できることが示唆された。
論文 参考訳(メタデータ) (2023-02-22T19:00:01Z) - Quasiparticle spectroscopy, transport, and magnetic properties of Nb
films used in superconducting transmon qubits [4.281703940559505]
超伝導量子ビットの製造に使用されるシリコン基板上のニオブ薄膜が特徴である。
これらのフィルムは、T_c=9.35$Kの優れた超伝導転移温度を示し、かなりクリーンな超伝導ギャップを示す。
磁場に対する応答は複雑で、相当に不可逆な挙動を示し、熱伝導が不十分である。
論文 参考訳(メタデータ) (2022-07-23T22:45:23Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
クロック遷移は磁気ノイズから分子スピン量子ビットを保護する。
核自由度への線形結合は、電子コヒーレンスの変調と崩壊を引き起こす。
核浴への量子情報漏洩がないことは、他のデコヒーレンス源を特徴づける機会を与える。
論文 参考訳(メタデータ) (2021-06-09T16:23:47Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
量子電磁力学は、導波路で伝播する光子と局在量子エミッタとの相互作用を扱う。
我々は、誘導光子と順序配列に焦点をあて、超放射および準放射状態、束縛光子状態、および有望な量子情報アプリケーションとの量子相関をもたらす。
論文 参考訳(メタデータ) (2021-03-11T17:49:52Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
トンネル2層系(TLS)は超伝導量子ビットなどのマイクロファブリック量子デバイスにおいて重要である。
本稿では,薄膜として堆積した任意の材料に個々のTLSを特徴付ける手法を提案する。
提案手法は, トンネル欠陥の構造を解明するために, 量子材料分光の道を開く。
論文 参考訳(メタデータ) (2020-11-29T09:57:50Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
超低温物質中における空洞を介する長距離磁気相互作用と光学格子の効果について検討した。
競合シナリオを導入しながら,グローバルな相互作用がシステムの根底にある磁気特性を変化させていることが判明した。
これにより、量子情報目的のためのロバストなメカニズムの設計に向けた新しい選択肢が可能になる。
論文 参考訳(メタデータ) (2020-11-16T08:03:44Z) - Ultra-strong photon-to-magnon coupling in multilayered heterostructures
involving superconducting coherence via ferromagnetic layers [0.0]
本稿では,前例のない強い結合パラメータを持つオンチップハイブリッドマグノンシステムを実現するための柔軟なアプローチを提案する。
本発明の強化結合強度は、ラジカル還元光子モード体積により提供される。
この発見は、量子技術のためのマイクロ波超伝導スピントロニクスの新しい機会を提供する。
論文 参考訳(メタデータ) (2020-10-26T13:06:19Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
ナノスケールでのスピンの電気的制御は、スピントロニクスのアーキテクチャ上の利点を提供する。
分子スピン材料における電場(E-場)感度の最近の実証が注目されている。
これまでに報告された電子場感度はかなり弱く、より強いスピン電結合を持つ分子をどうやって設計するかという問題を引き起こした。
論文 参考訳(メタデータ) (2020-05-03T09:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。