Experimental composable security decoy-state quantum key distribution
using time-phase encoding
- URL: http://arxiv.org/abs/2002.10668v1
- Date: Tue, 25 Feb 2020 04:59:43 GMT
- Title: Experimental composable security decoy-state quantum key distribution
using time-phase encoding
- Authors: Hua-Lei Yin and Peng Liu and Wei-Wei Dai and Zhao-Hui Ci and Jie Gu
and Tian Gao and Qiang-Wei Wang and Zi-Yao Shen
- Abstract summary: We provide the rigorous finite-key security bounds for four-intensity decoy-state BB84 QKD against coherent attacks.
We build a time-phase encoding system with 200 MHz clocked to implement this protocol, in which the real-time secret key rate is more than 60 kbps over 50 km single-mode fiber.
- Score: 19.037123608278602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) promises provably secure communications. In
order to improve the secret key rate, combining a biased basis choice with the
decoy-state method is proposed. Concomitantly, there is a basis-independent
detection efficiency condition, which usually cannot be satisfied in a
practical system, such as the time-phase encoding. Fortunately, this flaw has
been recently removed theoretically and experimentally using the fact that the
expected yields of single-photon states prepared in two bases stay the same for
a given measurement basis. However, the security proofs do not fully consider
the finite-key effects for general attacks. In this work, we provide the
rigorous finite-key security bounds for four-intensity decoy-state BB84 QKD
against coherent attacks in the universally composable framework. Furthermore,
we build a time-phase encoding system with 200 MHz clocked to implement this
protocol, in which the real-time secret key rate is more than 60 kbps over 50
km single-mode fiber.
Related papers
- Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Tight finite-key analysis for mode-pairing quantum key distribution [21.81489337632085]
We analyze the finite-key effect for the MP-QKD protocol with rigorous security proof against general attacks.
We propose a six-state MP-QKD protocol and analyze its finite-key effect.
arXiv Detail & Related papers (2023-02-27T02:35:52Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements [0.2519906683279153]
Quantum key distribution (QKD) protocols aim at allowing two parties to generate a secret shared key.
While many QKD protocols have been proven unconditionally secure in theory, practical security analyses of experimental QKD implementations typically do not take into account all possible loopholes.
We present a simple method of computing secure key rates for any practical implementation of discrete-variable QKD.
arXiv Detail & Related papers (2022-08-29T17:37:58Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Simple security proof of coherent-one-way quantum key distribution [10.146265944582552]
Coherent-one-way quantum key distribution (COW-QKD) has the ability to withstand photon-number-splitting attacks.
Recent studies have shown that the current COW-QKD system is insecure and can only distribute secret keys safely within 20 km of the optical fiber length.
We propose a practical implementation of COW-QKD by adding a two-pulse vacuum state as a new decoy sequence.
arXiv Detail & Related papers (2021-07-20T08:40:16Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.