Tight finite-key analysis for mode-pairing quantum key distribution
- URL: http://arxiv.org/abs/2302.13481v1
- Date: Mon, 27 Feb 2023 02:35:52 GMT
- Title: Tight finite-key analysis for mode-pairing quantum key distribution
- Authors: Ze-Hao Wang, Zhen-Qiang Yin, Shuang Wang, Rong Wang, Feng-Yu Lu, Wei
Chen, De-Yong He, Guang-Can Guo, and Zheng-Fu Han
- Abstract summary: We analyze the finite-key effect for the MP-QKD protocol with rigorous security proof against general attacks.
We propose a six-state MP-QKD protocol and analyze its finite-key effect.
- Score: 21.81489337632085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mode-pairing quantum key distribution (MP-QKD) is a potential protocol that
is not only immune to all possible detector side channel attacks, but also
breaks the repeaterless rate-transmittance bound without needing global phase
locking. Here we analyze the finite-key effect for the MP-QKD protocol with
rigorous security proof against general attacks. Moreover, we propose a
six-state MP-QKD protocol and analyze its finite-key effect. The results show
that the original protocol can break the repeaterless rate-transmittance bound
with a typical finite number of pulses in practice. And our six-state protocol
can improve the secret key rate significantly in long distance cases.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements [0.2519906683279153]
Quantum key distribution (QKD) protocols aim at allowing two parties to generate a secret shared key.
While many QKD protocols have been proven unconditionally secure in theory, practical security analyses of experimental QKD implementations typically do not take into account all possible loopholes.
We present a simple method of computing secure key rates for any practical implementation of discrete-variable QKD.
arXiv Detail & Related papers (2022-08-29T17:37:58Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Numerical Method for Finite-size Security Analysis of Quantum Key
Distribution [1.2891210250935146]
We develop a finite-size security analysis against general attacks for general QKD protocols.
Our result shows that the finite-size key rate can surpass the linear key-rate bound in a realistic communication time.
arXiv Detail & Related papers (2021-11-16T09:10:56Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Experimental composable security decoy-state quantum key distribution
using time-phase encoding [19.037123608278602]
We provide the rigorous finite-key security bounds for four-intensity decoy-state BB84 QKD against coherent attacks.
We build a time-phase encoding system with 200 MHz clocked to implement this protocol, in which the real-time secret key rate is more than 60 kbps over 50 km single-mode fiber.
arXiv Detail & Related papers (2020-02-25T04:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.