Uncoupled Majorana fermions in open quantum systems: On the efficient
simulation of non-equilibrium stationary states of quadratic Fermi models
- URL: http://arxiv.org/abs/2002.11160v2
- Date: Wed, 13 Jan 2021 15:22:21 GMT
- Title: Uncoupled Majorana fermions in open quantum systems: On the efficient
simulation of non-equilibrium stationary states of quadratic Fermi models
- Authors: Jose Reslen
- Abstract summary: A decomposition of the non-equilibrium stationary state of a quadratic Fermi system influenced by linear baths is obtained.
The scheme is then applied to examine the occurrence of uncoupled Majorana fermions in Kitaev chains subject to baths on the ends.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A decomposition of the non-equilibrium stationary state of a quadratic Fermi
system influenced by linear baths is obtained and used to establish a
simulation protocol in terms of tensor states. The scheme is then applied to
examine the occurrence of uncoupled Majorana fermions in Kitaev chains subject
to baths on the ends. The resulting phase diagram is compared against the
topological characterization of the equilibrium chain and the protocol
efficiency is studied with respect to this model
Related papers
- Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy under quantum jumps that induce local particle losses in a model of free fermions hopping.
We show that by tuning the system parameters, a measurement-induced entanglement transition occurs where the entanglement entropy scaling changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Real-time scattering in the lattice Schwinger model [0.0]
We simulate the real-time collisions of composite mesons in the lattice Schwinger model.
We observe the opening of the inelastic channel in which two heavier mesons are produced and identify the momentum threshold.
arXiv Detail & Related papers (2024-02-28T15:55:37Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Locality of Spontaneous Symmetry Breaking and Universal Spacing
Distribution of Topological Defects Formed Across a Phase Transition [62.997667081978825]
A continuous phase transition results in the formation of topological defects with a density predicted by the Kibble-Zurek mechanism (KZM)
We characterize the spatial distribution of point-like topological defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial dimension with KZM density.
arXiv Detail & Related papers (2022-02-23T19:00:06Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Entanglement Transitions from Stochastic Resetting of Non-Hermitian
Quasiparticles [0.0]
We write down a renewal equation for the statistics of the entanglement entropy and show that depending on the spectrum of quasiparticle decay rates different entanglement scaling can arise and even sharp entanglement phase transitions.
When applied to a Quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point.
arXiv Detail & Related papers (2021-11-05T13:38:04Z) - The Fermionic influence superoperator: a canonical derivation for the
development of methods to simulate the influence of a Fermionic environment
on a quantum system with arbitrary parity symmetry [0.46664938579243576]
We present a canonical derivation of an influence superoperator which generates the reduced dynamics of a Fermionic quantum system linearly coupled to a Fermionic environment initially at thermal equilibrium.
We use this formalism to derive a generalized-Lindblad master equation (in the Markovian limit) and a generalized version of the hierarchical equations of motion valid in arbitrary parity-symmetry conditions.
arXiv Detail & Related papers (2021-08-20T10:13:25Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantized Floquet topology with temporal noise [0.0]
We study the Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator.
We find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude.
This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase.
arXiv Detail & Related papers (2020-06-18T17:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.