論文の概要: The role of regularization in classification of high-dimensional noisy
Gaussian mixture
- arxiv url: http://arxiv.org/abs/2002.11544v1
- Date: Wed, 26 Feb 2020 14:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 15:00:26.859103
- Title: The role of regularization in classification of high-dimensional noisy
Gaussian mixture
- Title(参考訳): 高次元雑音ガウス混合の分類における正規化の役割
- Authors: Francesca Mignacco, Florent Krzakala, Yue M. Lu and Lenka Zdeborov\'a
- Abstract要約: 雑音状態における2つのガウスの高次元混合を考える。
正規化凸分類器の一般化誤差を厳密に解析する。
ベイズ最適性能に到達できるような正規化の驚くべき効果について論じる。
- 参考スコア(独自算出の注目度): 36.279288150100875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a high-dimensional mixture of two Gaussians in the noisy regime
where even an oracle knowing the centers of the clusters misclassifies a small
but finite fraction of the points. We provide a rigorous analysis of the
generalization error of regularized convex classifiers, including ridge, hinge
and logistic regression, in the high-dimensional limit where the number $n$ of
samples and their dimension $d$ go to infinity while their ratio is fixed to
$\alpha= n/d$. We discuss surprising effects of the regularization that in some
cases allows to reach the Bayes-optimal performances. We also illustrate the
interpolation peak at low regularization, and analyze the role of the
respective sizes of the two clusters.
- Abstract(参考訳): 雑音状態における2つのガウスの高次元混合を考えると、クラスターの中心を知るオラクルでさえ、点の小さいが有限な部分の分類を誤る。
我々は、リッジ、ヒンジ、ロジスティック回帰を含む正規化凸分類器の一般化誤差の厳密な解析を行い、それらの比率が$\alpha=n/d$に固定されながら、サンプル数n$とその次元$d$が無限に移動する高次元の極限について述べる。
我々は,ベイズ最適性能に到達できるような規則化の驚くべき効果について論じる。
また,低正規化時の補間ピークを明らかにし,2つのクラスタのそれぞれのサイズの役割を分析する。
関連論文リスト
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
高次元極限における正規化凸分類器の一般クラスの挙動について検討する。
我々の焦点は、推定器の一般化誤差と変数選択性である。
論文 参考訳(メタデータ) (2024-10-25T19:58:36Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
IAC (Instance-Adaptive Clustering, インスタンス適応クラスタリング) を提案する。
IACは$ MathcalO(n, textpolylog(n) $の計算複雑性を維持しており、大規模問題に対してスケーラブルで実用的なものである。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach [1.4469725791865984]
我々は2つのデータポイントの雲と一般的なセントロイドの混合の学習を特徴付ける。
得られた推定器の一般化性能について検討し、正規化の役割を解析し、分離性遷移を解析した。
論文 参考訳(メタデータ) (2023-04-06T07:53:05Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
最小限の最適化問題は、敵対的学習や生成的モデリングなど、いくつかの重要な機械学習設定で発生する。
この研究では、代わりに混合平衡を見つけることに集中し、関連する持ち上げ問題を確率測度の空間で考察する。
エントロピー正則化を加えることで、我々の主な成果はグローバル均衡へのグローバル収束を確立する。
論文 参考訳(メタデータ) (2022-02-14T02:23:16Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
本研究では,HSI復調のためのロバストな主成分分析のための新しい非特異なアプローチを提案する。
我々は、ランクとスパースコンポーネントの両方に対する正確な近似を開発する。
シミュレーションと実HSIの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-01-08T11:48:46Z) - Minimax Supervised Clustering in the Anisotropic Gaussian Mixture Model:
A new take on Robust Interpolation [5.98367009147573]
2成分異方性ガウス混合モデルに基づくクラスタリング問題について検討する。
その結果, 線形判別分析(LDA)分類器は, ミニマックス感において準最適であることが判明した。
論文 参考訳(メタデータ) (2021-11-13T05:19:37Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
多クラス分類問題に対する一般化線形モデルは、現代の機械学習タスクの基本的な構成要素の1つである。
実験的リスク最小化による高次元推定器の精度を実証する。
合成データの範囲を超えて我々の理論をどのように適用できるかを論じる。
論文 参考訳(メタデータ) (2021-06-07T16:53:56Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Wide flat minima and optimal generalization in classifying
high-dimensional Gaussian mixtures [8.556763944288116]
非平衡クラスタにおいても,ベイズ最適一般化誤差を実現する構成が存在することを示す。
また,平均二乗誤差損失の幅の広い平らな最小値を目標とするアルゴリズム的ケースについても検討した。
論文 参考訳(メタデータ) (2020-10-27T01:32:03Z) - Efficient Clustering for Stretched Mixtures: Landscape and Optimality [4.2111286819721485]
本稿では,2つの楕円分布の平衡混合から抽出された未ラベルのサンプルを受信する正準クラスタリング問題について考察する。
非最適クラスタリング関数は、サンプルサイズが一定の統計的目標を超えると、望ましい幾何学的性質を示す。
論文 参考訳(メタデータ) (2020-03-22T17:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。