Sim2Real Transfer for Reinforcement Learning without Dynamics
Randomization
- URL: http://arxiv.org/abs/2002.11635v1
- Date: Wed, 19 Feb 2020 11:10:21 GMT
- Title: Sim2Real Transfer for Reinforcement Learning without Dynamics
Randomization
- Authors: Manuel Kaspar, Juan David Munoz Osorio, J\"urgen Bock
- Abstract summary: We show how to use the Operational Space Control framework (OSC) under joint and cartesian constraints for reinforcement learning in cartesian space.
Our method is able to learn fast and with adjustable degrees of freedom, while we are able to transfer policies without additional dynamics randomizations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we show how to use the Operational Space Control framework (OSC)
under joint and cartesian constraints for reinforcement learning in cartesian
space. Our method is therefore able to learn fast and with adjustable degrees
of freedom, while we are able to transfer policies without additional dynamics
randomizations on a KUKA LBR iiwa peg in-hole task. Before learning in
simulation starts, we perform a system identification for aligning the
simulation environment as far as possible with the dynamics of a real robot.
Adding constraints to the OSC controller allows us to learn in a safe way on
the real robot or to learn a flexible, goal conditioned policy that can be
easily transferred from simulation to the real robot.
Related papers
- EAGERx: Graph-Based Framework for Sim2real Robot Learning [9.145895178276822]
Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics.
We introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning.
arXiv Detail & Related papers (2024-07-05T08:01:19Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot [19.789369416528604]
grasp force control aims to manipulate objects safely by limiting the amount of force exerted on the object.
Prior works have either hand-modeled their force controllers, employed model-based approaches, or have not shown sim-to-real transfer.
We propose a model-free deep reinforcement learning approach trained in simulation and then transferred to the robot without further fine-tuning.
arXiv Detail & Related papers (2023-11-13T11:29:06Z) - Bi-Manual Block Assembly via Sim-to-Real Reinforcement Learning [24.223788665601678]
Two xArm6 robots solve the U-shape assembly task with a success rate of above90% in simulation, and 50% on real hardware without any additional real-world fine-tuning.
Our results present a significant step forward for bi-arm capability on real hardware, and we hope our system can inspire future research on deep RL and Sim2Real transfer bi-manualpolicies.
arXiv Detail & Related papers (2023-03-27T01:25:24Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
We present a reinforcement learning-based solution to autonomously race on a miniature race car platform.
We show that a policy that is trained purely in simulation can be successfully transferred to the real robotic setup.
arXiv Detail & Related papers (2020-11-26T14:58:49Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Multiplicative Controller Fusion: Leveraging Algorithmic Priors for
Sample-efficient Reinforcement Learning and Safe Sim-To-Real Transfer [18.50206483493784]
We present a novel approach to model-free reinforcement learning that can leverage existing sub-optimal solutions.
During training, our gated fusion approach enables the prior to guide the initial stages of exploration.
We show the efficacy of our Multiplicative Controller Fusion approach on the task of robot navigation.
arXiv Detail & Related papers (2020-03-11T05:12:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.