Simple implementation of high fidelity controlled-$i$SWAP gates and
quantum circuit exponentiation of non-Hermitian gates
- URL: http://arxiv.org/abs/2002.11728v2
- Date: Mon, 20 Jul 2020 09:13:27 GMT
- Title: Simple implementation of high fidelity controlled-$i$SWAP gates and
quantum circuit exponentiation of non-Hermitian gates
- Authors: S. E. Rasmussen and N. T. Zinner
- Abstract summary: The $i$swap gate is an entangling swapping gate where the qubits obtain a phase of $i$ if the state of the qubits is swapped.
We present a simple implementation of the controlled-$i$swap gate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $i$swap gate is an entangling swapping gate where the qubits obtain a
phase of $i$ if the state of the qubits is swapped. Here we present a simple
implementation of the controlled-$i$swap gate. The gate can be implemented with
several controls and works by applying a single flux pulse. The gate time is
independent of the number of controls, and we find high fidelities for any
number of controls. We discuss an implementation of the gates using
superconducting circuits and present a realistic implementation proposal, where
we have taken decoherence noise and fabrication errors on the superconducting
chip in to account, by Monte Carlo simulating possible errors. The general idea
presented in this paper is, however, not limited to such implementations. An
exponentiation of quantum gates is desired in some quantum information schemes
and we therefore also present a quantum circuit for probabilistic
exponentiating the $i$swap gate and other non-Hermitian gates.
Related papers
- One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Systematic error tolerant multiqubit holonomic entangling gates [11.21912040660678]
We propose to realize high-fidelity holonomic $(N+1)$-qubit controlled gates using Rydberg atoms confined in optical arrays or superconducting circuits.
Our study paves a new route to build robust multiqubit gates with Rydberg atoms trapped in optical arrays or with superconducting circuits.
arXiv Detail & Related papers (2020-12-05T03:00:47Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - High-fidelity software-defined quantum logic on a superconducting qudit [23.29920768537117]
Modern solid-state quantum processors approach quantum computation with a set of discrete qubit operations (gates)
In principle, this approach is highly flexible, allowing full control over the qubits' Hilbert space without necessitating the development of specific control protocols for each application.
Current error rates on quantum hardware place harsh limits on the number of primitive gates that can bed together (with compounding error rates) and remain viable.
Here, we report our efforts at implementing a software-defined $0leftarrow2$ SWAP gate that does not rely on a primitive gate set and achieves an average gate fidelity of $99.4
arXiv Detail & Related papers (2020-05-27T05:12:51Z) - Benchmarking the noise sensitivity of different parametric two-qubit
gates in a single superconducting quantum computing platform [0.0]
A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity.
We benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler.
We argue that spurious $ZZ$-type couplings are the dominant error source for the iSWAP gate.
arXiv Detail & Related papers (2020-05-12T11:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.