Learning Multivariate Hawkes Processes at Scale
- URL: http://arxiv.org/abs/2002.12501v1
- Date: Fri, 28 Feb 2020 01:18:01 GMT
- Title: Learning Multivariate Hawkes Processes at Scale
- Authors: Maximilian Nickel, Matthew Le
- Abstract summary: We show that our approach allows to compute the exact likelihood and gradients of an MHP -- independently of the ambient dimensions of the underlying network.
We show on synthetic and real-world datasets that our model does not only achieve state-of-the-art predictive results, but also improves runtime performance by multiple orders of magnitude.
- Score: 17.17906360554892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate Hawkes Processes (MHPs) are an important class of temporal point
processes that have enabled key advances in understanding and predicting social
information systems. However, due to their complex modeling of temporal
dependencies, MHPs have proven to be notoriously difficult to scale, what has
limited their applications to relatively small domains. In this work, we
propose a novel model and computational approach to overcome this important
limitation. By exploiting a characteristic sparsity pattern in real-world
diffusion processes, we show that our approach allows to compute the exact
likelihood and gradients of an MHP -- independently of the ambient dimensions
of the underlying network. We show on synthetic and real-world datasets that
our model does not only achieve state-of-the-art predictive results, but also
improves runtime performance by multiple orders of magnitude compared to
standard methods on sparse event sequences. In combination with easily
interpretable latent variables and influence structures, this allows us to
analyze diffusion processes at previously unattainable scale.
Related papers
- Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology.
Real-world datasets can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown process.
We propose a flexible and efficient latent-variable model that is capable of addressing all these limitations.
arXiv Detail & Related papers (2024-02-08T15:41:48Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Scalable and adaptive variational Bayes methods for Hawkes processes [4.580983642743026]
We propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes.
Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting.
arXiv Detail & Related papers (2022-12-01T05:35:32Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Modeling Massive Spatial Datasets Using a Conjugate Bayesian Linear
Regression Framework [0.0]
A variety of scalable spatial process models have been proposed that can be easily embedded within a hierarchical modeling framework.
This article discusses how point-referenced spatial process models can be cast as a conjugate Bayesian linear regression that can rapidly deliver inference on spatial processes.
arXiv Detail & Related papers (2021-09-09T17:46:00Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.