SCALE-Net: Scalable Vehicle Trajectory Prediction Network under Random
Number of Interacting Vehicles via Edge-enhanced Graph Convolutional Neural
Network
- URL: http://arxiv.org/abs/2002.12609v1
- Date: Fri, 28 Feb 2020 09:25:01 GMT
- Title: SCALE-Net: Scalable Vehicle Trajectory Prediction Network under Random
Number of Interacting Vehicles via Edge-enhanced Graph Convolutional Neural
Network
- Authors: Hyeongseok Jeon, Junwon Choi, Dongsuk Kum
- Abstract summary: The first fully scalable trajectory prediction network, SCALE-Net, is proposed.
It can ensure both higher prediction performance and consistent computational load regardless of the number of vehicles.
- Score: 15.916040656243858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the future trajectory of surrounding vehicles in a randomly
varying traffic level is one of the most challenging problems in developing an
autonomous vehicle. Since there is no pre-defined number of interacting
vehicles participate in, the prediction network has to be scalable with respect
to the vehicle number in order to guarantee the consistency in terms of both
accuracy and computational load. In this paper, the first fully scalable
trajectory prediction network, SCALE-Net, is proposed that can ensure both
higher prediction performance and consistent computational load regardless of
the number of surrounding vehicles. The SCALE-Net employs the Edge-enhance
Graph Convolutional Neural Network (EGCN) for the inter-vehicular interaction
embedding network. Since the proposed EGCN is inherently scalable with respect
to the graph node (an agent in this study), the model can be operated
independently from the total number of vehicles considered. We evaluated the
scalability of the SCALE-Net on the publically available NGSIM datasets by
comparing variations on computation time and prediction accuracy per single
driving scene with respect to the varying vehicle number. The experimental test
shows that both computation time and prediction performance of the SCALE-Net
consistently outperform those of previous models regardless of the level of
traffic complexities.
Related papers
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Exploring Attention GAN for Vehicle Motion Prediction [2.887073662645855]
We study the influence of attention in generative models for motion prediction, considering both physical and social context.
We validate our method using the Argoverse Motion Forecasting Benchmark 1.1, achieving competitive unimodal results.
arXiv Detail & Related papers (2022-09-26T13:18:32Z) - Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving [2.6774008509841005]
This paper proposes a graph-based spatial-temporal convolutional network ( GSTCN) to predict future trajectory distributions of all neighbor vehicles.
The spatial-temporal features are encoded and decoded by a gated recurrent unit (GRU) network to generate future trajectory distributions.
Our network is evaluated on two real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation Simulation (NGSIM)
arXiv Detail & Related papers (2021-09-27T02:20:38Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network [12.070251470948772]
We show how Probabilistic Crowd GAN can output probabilistic multimodal predictions.
We also propose the use of Graph Vehicle-Pedestrian Attention Network (GVAT), which models social interactions.
We demonstrate improvements on the existing state of the art methods for trajectory prediction and illustrate how the true multimodal and uncertain nature of crowd interactions can be directly modelled.
arXiv Detail & Related papers (2020-06-23T11:25:16Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.