Robust Policy Search for Robot Navigation
- URL: http://arxiv.org/abs/2003.01000v2
- Date: Tue, 28 Jan 2025 15:17:10 GMT
- Title: Robust Policy Search for Robot Navigation
- Authors: Javier Garcia-Barcos, Ruben Martinez-Cantin,
- Abstract summary: Complex robot navigation and control problems can be framed as policy search problems.
In this work, we incorporate both robust optimization and statistical robustness, showing that both types of robustness are synergistic.
We present results in several benchmarks and robot tasks to have convergence guarantees and improved performance even with surrogate modeling errors.
- Score: 3.130722489512822
- License:
- Abstract: Complex robot navigation and control problems can be framed as policy search problems. However, interactive learning in uncertain environments can be expensive, requiring the use of data-efficient methods. Bayesian optimization is an efficient nonlinear optimization method where queries are carefully selected to gather information about the optimum location. This is achieved by a surrogate model, which encodes past information, and the acquisition function for query selection. Bayesian optimization can be very sensitive to uncertainty in the input data or prior assumptions. In this work, we incorporate both robust optimization and statistical robustness, showing that both types of robustness are synergistic. For robust optimization we use an improved version of unscented Bayesian optimization which provides safe and repeatable policies in the presence of policy uncertainty. We also provide new theoretical insights. For statistical robustness, we use an adaptive surrogate model and we introduce the Boltzmann selection as a stochastic acquisition method to have convergence guarantees and improved performance even with surrogate modeling errors. We present results in several optimization benchmarks and robot tasks.
Related papers
- Robust Entropy Search for Safe Efficient Bayesian Optimization [40.56709991743249]
We develop an efficient information-based acquisition function that we call Robust Entropy Search (RES)
RES reliably finds robust optima, outperforming state-of-the-art algorithms.
arXiv Detail & Related papers (2024-05-29T13:00:10Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
Reduced physical models of the system can be incorporated into the optimization process, accelerating it.
These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper.
Safety is a crucial criterion for online optimization methods such as Bayesian optimization.
arXiv Detail & Related papers (2023-12-12T13:59:26Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Bayesian Optimization with Informative Covariance [13.113313427848828]
We propose novel informative covariance functions for optimization, leveraging nonstationarity to encode preferences for certain regions of the search space.
We demonstrate that the proposed functions can increase the sample efficiency of Bayesian optimization in high dimensions, even under weak prior information.
arXiv Detail & Related papers (2022-08-04T15:05:11Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.