論文の概要: A Permutation-Equivariant Neural Network Architecture For Auction Design
- arxiv url: http://arxiv.org/abs/2003.01497v4
- Date: Mon, 25 Oct 2021 15:41:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 04:48:08.278115
- Title: A Permutation-Equivariant Neural Network Architecture For Auction Design
- Title(参考訳): オークション設計のための置換同変ニューラルネットワークアーキテクチャ
- Authors: Jad Rahme, Samy Jelassi, Joan Bruna, S. Matthew Weinberg
- Abstract要約: 期待収益を最大化するインセンティブ互換オークションの設計は、オークションデザインの中心的な問題である。
本研究では、置換同変対称性を有するオークション設計問題を考察し、置換同変最適機構を完全に回復できるニューラルネットワークを構築する。
- 参考スコア(独自算出の注目度): 49.41561446069114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing an incentive compatible auction that maximizes expected revenue is
a central problem in Auction Design. Theoretical approaches to the problem have
hit some limits in the past decades and analytical solutions are known for only
a few simple settings. Computational approaches to the problem through the use
of LPs have their own set of limitations. Building on the success of deep
learning, a new approach was recently proposed by Duetting et al. (2019) in
which the auction is modeled by a feed-forward neural network and the design
problem is framed as a learning problem. The neural architectures used in that
work are general purpose and do not take advantage of any of the symmetries the
problem could present, such as permutation equivariance. In this work, we
consider auction design problems that have permutation-equivariant symmetry and
construct a neural architecture that is capable of perfectly recovering the
permutation-equivariant optimal mechanism, which we show is not possible with
the previous architecture. We demonstrate that permutation-equivariant
architectures are not only capable of recovering previous results, they also
have better generalization properties.
- Abstract(参考訳): 予想収益を最大化するインセンティブ互換オークションの設計は、オークション設計の中心的な問題である。
この問題に対する理論的アプローチは過去数十年でいくつかの限界に達しており、分析的なソリューションはほんの少しの単純な設定でしか知られていない。
LPの使用による問題に対する計算的アプローチには、独自の制限セットがある。
ディープラーニングの成功に基づいて、新しいアプローチが最近Duetting et al. (2019)によって提案され、オークションはフィードフォワードニューラルネットワークによってモデル化され、設計問題は学習問題としてフレーム化されている。
その作業で使用される神経アーキテクチャは汎用的であり、置換同値のような問題が発生する可能性のある対称性のどれも利用しない。
本研究では、置換同変対称性を有するオークション設計問題について考察し、置換同変最適機構を完全に回復できるニューラルアーキテクチャを構築し、従来のアーキテクチャでは不可能であることを示す。
我々は、置換同変アーキテクチャが以前の結果を回復できるだけでなく、より優れた一般化特性を持つことを示す。
関連論文リスト
- ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference [69.24516189971929]
本稿では, 閉形式常微分方程式(ODE)という, 縦条件下での新しい解法を提案する。
私たちはまだODEを学ぶために継続的な最適化に依存していますが、結果として生じる推論マシンはもはやニューラルネットワークではありません。
論文 参考訳(メタデータ) (2024-03-16T02:07:45Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - Universal Neural Functionals [67.80283995795985]
多くの現代の機械学習タスクでは、ウェイトスペース機能を処理することが難しい問題である。
最近の研究は、単純なフィードフォワードネットワークの置換対称性に同値な有望な重み空間モデルを開発した。
本研究は,任意の重み空間に対する置換同変モデルを自動的に構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-07T20:12:27Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Permutation-Invariant Set Autoencoders with Fixed-Size Embeddings for
Multi-Agent Learning [7.22614468437919]
置換不変集合オートエンコーダ(PISA)を導入する。
PISAは、既存のベースラインよりも大幅に低い再構成誤差でエンコードを生成する。
マルチエージェントアプリケーションでその有用性を示す。
論文 参考訳(メタデータ) (2023-02-24T18:59:13Z) - Benefits of Permutation-Equivariance in Auction Mechanisms [90.42990121652956]
競売人の収益を最大化しつつ、競売人の過去の後悔を最小限にする競売メカニズムは、経済学において重要であるが複雑な問題である。
ニューラルネットワークによる最適なオークションメカニズムの学習を通じて、注目すべき進歩が達成されている。
論文 参考訳(メタデータ) (2022-10-11T16:13:25Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Regularizing Towards Permutation Invariance in Recurrent Models [26.36835670113303]
我々は、RNNが置換不変性に対して規則化可能であることを示し、その結果、コンパクトモデルが得られることを示した。
既存のソリューションは、主に、設計によって不変な置換性を持つ仮説クラスに学習問題を限定することを提案している。
提案手法は,合成および実世界のデータセットにおける他の置換不変手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-25T07:46:51Z) - Joint learning of variational representations and solvers for inverse
problems with partially-observed data [13.984814587222811]
本稿では,教師付き環境において,逆問題に対する実際の変分フレームワークを学習するためのエンドツーエンドフレームワークを設計する。
変動コストと勾配に基づく解法はどちらも、後者の自動微分を用いたニューラルネットワークとして記述される。
これにより、データ駆動による変分モデルの発見につながる。
論文 参考訳(メタデータ) (2020-06-05T19:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。