論文の概要: ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference
- arxiv url: http://arxiv.org/abs/2403.10766v1
- Date: Sat, 16 Mar 2024 02:07:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:54:53.890261
- Title: ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference
- Title(参考訳): 経時的不均一処理効果推定のためのODE発見
- Authors: Krzysztof Kacprzyk, Samuel Holt, Jeroen Berrevoets, Zhaozhi Qian, Mihaela van der Schaar,
- Abstract要約: 本稿では, 閉形式常微分方程式(ODE)という, 縦条件下での新しい解法を提案する。
私たちはまだODEを学ぶために継続的な最適化に依存していますが、結果として生じる推論マシンはもはやニューラルネットワークではありません。
- 参考スコア(独自算出の注目度): 69.24516189971929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring unbiased treatment effects has received widespread attention in the machine learning community. In recent years, our community has proposed numerous solutions in standard settings, high-dimensional treatment settings, and even longitudinal settings. While very diverse, the solution has mostly relied on neural networks for inference and simultaneous correction of assignment bias. New approaches typically build on top of previous approaches by proposing new (or refined) architectures and learning algorithms. However, the end result -- a neural-network-based inference machine -- remains unchallenged. In this paper, we introduce a different type of solution in the longitudinal setting: a closed-form ordinary differential equation (ODE). While we still rely on continuous optimization to learn an ODE, the resulting inference machine is no longer a neural network. Doing so yields several advantages such as interpretability, irregular sampling, and a different set of identification assumptions. Above all, we consider the introduction of a completely new type of solution to be our most important contribution as it may spark entirely new innovations in treatment effects in general. We facilitate this by formulating our contribution as a framework that can transform any ODE discovery method into a treatment effects method.
- Abstract(参考訳): 偏見のない治療効果を推測することは、機械学習コミュニティで広く注目を集めている。
近年,我々のコミュニティでは,標準設定,高次元処理設定,縦方向設定など,数多くのソリューションが提案されている。
非常に多様だが、このソリューションは主に、代入バイアスの推論と同時修正のためにニューラルネットワークに依存している。
新しいアプローチは通常、新しい(あるいは洗練された)アーキテクチャと学習アルゴリズムを提案することで、以前のアプローチの上に構築される。
しかし、最終的な結果(ニューラルネットワークベースの推論マシン)はいまだ無意味だ。
本稿では, 閉形式常微分方程式 (ODE) という, 異なるタイプの解を縦方向の設定で導入する。
私たちはまだODEを学ぶために継続的な最適化に依存していますが、結果として生じる推論マシンはもはやニューラルネットワークではありません。
そうすることで、解釈可能性、不規則サンプリング、異なる識別仮定のセットなど、いくつかの利点が得られる。
とりわけ、治療効果に全く新しい革新をもたらす可能性があるため、全く新しいタイプのソリューションの導入が最も重要な貢献であると考えています。
我々は、ODE発見法を治療効果法に変換するフレームワークとして、コントリビューションを定式化することで、これを促進します。
関連論文リスト
- Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
線形畳み込みニューラルネットワークを用いてPDEの有限差分解を直接推定するために、トレーニングデータを必要としない完全に教師なしのアプローチを提案する。
提案手法は、類似の有限差分に基づくアプローチよりもパラメータを著しく少なくし、また、いくつかの選択された楕円型および放物型問題に対する真の解に匹敵する精度を示す。
論文 参考訳(メタデータ) (2023-11-01T03:15:10Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
アダプティブと呼ばれるいくつかのODEソルバは、目の前の問題の複雑さに応じて評価戦略を適用することができる。
本稿では,動的システムモデリングのためのブラックボックスとして適応型ソルバをシームレスに利用できない理由を示すための簡単な実験について述べる。
論文 参考訳(メタデータ) (2022-11-13T17:48:04Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Imbedding Deep Neural Networks [0.0]
ニューラルODEのような連続深度ニューラルネットワークは、非線形ベクトル値の最適制御問題の観点から、残留ニューラルネットワークの理解を再燃させた。
本稿では,ネットワークの深さを基本変数とする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T22:00:41Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
本稿では、介入データを活用可能なニューラルネットワークに基づく理論的基盤化手法を提案する。
提案手法は,様々な環境下での美術品の状態と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-07-03T15:19:17Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
我々は、ニューラルネットワークの性能を評価するために、正確な解の知識を必要としない特定の損失関数を証明した。
ニューラルネットワークは、トレーニング領域内での継続的ソリューションの近似に熟練していることが示されている。
ユーザフレンドリで適応可能なオープンソースコード(ODE$mathcalN$)がGitHubで提供されている。
論文 参考訳(メタデータ) (2020-05-28T15:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。