論文の概要: Combining Pretrained High-Resource Embeddings and Subword
Representations for Low-Resource Languages
- arxiv url: http://arxiv.org/abs/2003.04419v3
- Date: Tue, 21 Apr 2020 09:43:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 07:48:12.639703
- Title: Combining Pretrained High-Resource Embeddings and Subword
Representations for Low-Resource Languages
- Title(参考訳): 低リソース言語のための事前制約付き高リソース埋め込みとサブワード表現の組み合わせ
- Authors: Machel Reid, Edison Marrese-Taylor and Yutaka Matsuo
- Abstract要約: 形態学的に豊かな言語(MRL)の質を利用した手法を探求する。
本稿では,Xhosa- English 翻訳の下流処理において,事前学習と形態的インフォームド単語の埋め込みを併用したメタ埋め込み手法が有効であることを示す。
- 参考スコア(独自算出の注目度): 24.775371434410328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The contrast between the need for large amounts of data for current Natural
Language Processing (NLP) techniques, and the lack thereof, is accentuated in
the case of African languages, most of which are considered low-resource. To
help circumvent this issue, we explore techniques exploiting the qualities of
morphologically rich languages (MRLs), while leveraging pretrained word vectors
in well-resourced languages. In our exploration, we show that a meta-embedding
approach combining both pretrained and morphologically-informed word embeddings
performs best in the downstream task of Xhosa-English translation.
- Abstract(参考訳): 現在の自然言語処理(nlp)技術に対する大量のデータの必要性と、その欠如との対比は、アフリカの言語の場合において強調され、そのほとんどは低リソースとみなされている。
この問題を回避するため,形態学的にリッチな言語(MRL)の質を活かした手法を探索し,事前学習した単語ベクトルを十分に活用する。
そこで本研究では,Xhosa- English 翻訳の下流処理において,事前学習と形態的インフォームド単語の埋め込みを併用したメタ埋め込み手法が有効であることを示す。
関連論文リスト
- Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Transfer to a Low-Resource Language via Close Relatives: The Case Study
on Faroese [54.00582760714034]
言語間のNLP転送は、高ソース言語のデータとモデルを活用することで改善できる。
我々は、名前付きエンティティ認識(NER)、セマンティックテキスト類似性(STS)、スカンジナビア全言語で訓練された新しい言語モデルのためのFaroeseデータセットとFaroeseデータセットの新しいWebコーパスをリリースする。
論文 参考訳(メタデータ) (2023-04-18T08:42:38Z) - Morphological Processing of Low-Resource Languages: Where We Are and
What's Next [23.7371787793763]
注釈付きリソースが最小か全くない言語に適したアプローチに焦点を合わせます。
我々は、言語の形態を原文だけで理解する、論理的な次の課題に取り組む準備が整っていると論じる。
論文 参考訳(メタデータ) (2022-03-16T19:47:04Z) - Adapting High-resource NMT Models to Translate Low-resource Related
Languages without Parallel Data [40.11208706647032]
並列データの不足は、低リソース言語向けの高品質機械翻訳システムのトレーニングにおいて大きな障害となる。
本研究では,この言語的重複を利用して,モノリンガルデータのみを用いた低リソース言語への翻訳を容易にする。
我々の手法であるNMT-Adaptは,低リソース適応にモノリンガルデータを利用するために,デノイング自動符号化,バックトランスレーション,対向目的を組み合わせた手法である。
論文 参考訳(メタデータ) (2021-05-31T16:01:18Z) - How Low is Too Low? A Computational Perspective on Extremely
Low-Resource Languages [1.7625363344837164]
シュメール語のための最初の言語間情報抽出パイプラインを紹介する。
また、低リソースNLPのための解釈可能性ツールキットであるInterpretLRをキュレートする。
パイプラインのほとんどのコンポーネントは、解釈可能な実行を得るために、他の言語に一般化することができます。
論文 参考訳(メタデータ) (2021-05-30T12:09:59Z) - MetaXL: Meta Representation Transformation for Low-resource
Cross-lingual Learning [91.5426763812547]
言語間移動学習は低リソース言語のための機能的NLPシステムを構築するための最も効果的な方法の1つである。
MetaXLは、メタラーニングベースのフレームワークで、表現を補助言語からターゲット言語にジャッジに変換することを学ぶ。
論文 参考訳(メタデータ) (2021-04-16T06:15:52Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Transfer learning and subword sampling for asymmetric-resource
one-to-many neural translation [14.116412358534442]
低リソース言語のためのニューラルマシン翻訳を改善する方法について概説する。
人工的に制限された3つの翻訳タスクと1つの現実世界タスクでテストが行われる。
実験は、特にスケジュールされたマルチタスク学習、denoising autoencoder、サブワードサンプリングに肯定的な効果を示す。
論文 参考訳(メタデータ) (2020-04-08T14:19:05Z) - Cross-lingual, Character-Level Neural Morphological Tagging [57.0020906265213]
文字レベルのリカレントなニューラルタグをトレーニングし、高リソース言語と低リソース言語を併用して形態的タグ付けを予測する。
複数の関連言語間の共同文字表現の学習は、高リソース言語から低リソース言語への知識伝達を成功させ、モノリンガルモデルの精度を最大30%向上させる。
論文 参考訳(メタデータ) (2017-08-30T08:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。