Deep Learning Assisted CSI Estimation for Joint URLLC and eMBB Resource
Allocation
- URL: http://arxiv.org/abs/2003.05685v1
- Date: Thu, 12 Mar 2020 10:00:08 GMT
- Title: Deep Learning Assisted CSI Estimation for Joint URLLC and eMBB Resource
Allocation
- Authors: Hamza Khan, M. Majid Butt, Sumudu Samarakoon, Philippe Sehier, and
Mehdi Bennis
- Abstract summary: We propose a deep learning assisted CSI estimation technique in highly mobile vehicular networks.
We formulate and solve a dynamic network slicing based resource allocation problem for vehicular user equipments.
- Score: 36.364156900974535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple-input multiple-output (MIMO) is a key for the fifth generation (5G)
and beyond wireless communication systems owing to higher spectrum efficiency,
spatial gains, and energy efficiency. Reaping the benefits of MIMO transmission
can be fully harnessed if the channel state information (CSI) is available at
the transmitter side. However, the acquisition of transmitter side CSI entails
many challenges. In this paper, we propose a deep learning assisted CSI
estimation technique in highly mobile vehicular networks, based on the fact
that the propagation environment (scatterers, reflectors) is almost identical
thereby allowing a data driven deep neural network (DNN) to learn the
non-linear CSI relations with negligible overhead. Moreover, we formulate and
solve a dynamic network slicing based resource allocation problem for vehicular
user equipments (VUEs) requesting enhanced mobile broadband (eMBB) and
ultra-reliable low latency (URLLC) traffic slices. The formulation considers a
threshold rate violation probability minimization for the eMBB slice while
satisfying a probabilistic threshold rate criterion for the URLLC slice.
Simulation result shows that an overhead reduction of 50% can be achieved with
12% increase in threshold violations compared to an ideal case with perfect CSI
knowledge.
Related papers
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
arXiv Detail & Related papers (2023-12-07T06:01:47Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - CSI Feedback with Model-Driven Deep Learning of Massive MIMO Systems [0.0]
We propose a two stages low rank (TSLR) CSI feedback scheme to reduce the feedback overhead based on model-driven deep learning.
Besides, we design a deep iterative neural network, named FISTA-Net, by unfolding the fast iterative shrinkage thresholding algorithm (FISTA) to achieve more efficient CSI feedback.
arXiv Detail & Related papers (2021-12-13T03:50:43Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z) - Binarized Aggregated Network with Quantization: Flexible Deep Learning
Deployment for CSI Feedback in Massive MIMO System [22.068682756598914]
A novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance.
The elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations.
Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks.
arXiv Detail & Related papers (2021-05-01T22:50:25Z) - CLNet: Complex Input Lightweight Neural Network designed for Massive
MIMO CSI Feedback [7.63185216082836]
This paper presents a novel neural network CLNet tailored for CSI feedback problem based on the intrinsic properties of CSI.
The experiment result shows that CLNet outperforms the state-of-the-art method by average accuracy improvement of 5.41% in both outdoor and indoor scenarios.
arXiv Detail & Related papers (2021-02-15T12:16:11Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.